Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013, Hydrological Processes
…
13 pages
1 file
Water is one of the major environmental factors limiting plant growth and survival in the Mediterranean region. Quercus suber L. woodlands occupy vast areas in the Iberian Peninsula, frequently under shallow water table conditions. The relative magnitude of soil and groundwater uptake to supply transpiration is not easy to evaluate under these circumstances. We recently developed a conceptual framework for the functioning of the root system in Q. suber that simulates well tree transpiration, based on two types of root behaviour: shallow connected and deep connected. Although this significantly improved knowledge on the functional traits of Mediterranean Q. suber, the approach has the limitation of requiring root sap flow data, which are seldom available. In this work, we present alternative methodologies to assess if trees are connected to groundwater and to estimate the soil and groundwater contributions to tree transpiration. We provide evidence on the tree unrestricted access to groundwater solely based on meteorological, stem sap flow and leaf water potential data. Using a soil mass balance approach, we estimated the yearly soil and groundwater contributions to tree transpiration: 69.7% and 30.3%, respectively. Groundwater uptake became dominant in the dry summer: 73.2% of tree transpiration. Results reproduce extremely well those derived from root modelling. Because of its simplicity both in formulation and data requirements, our approach is potentially liable to be adapted to other groundwaterdependent Mediterranean oak sites, where interactions between land use and water resources may be relevant.
Hydrological Processes, 2013
Water is one of the major environmental factors limiting plant growth and survival in the Mediterranean region. Quercus suber L. woodlands occupy vast areas in the Iberian Peninsula, frequently under shallow water table conditions. The relative magnitude of soil and groundwater uptake to supply transpiration is not easy to evaluate under these circumstances. We recently developed a conceptual framework for the functioning of the root system in Q. suber that simulates well tree transpiration, based on two types of root behaviour: shallow connected and deep connected. Although this significantly improved knowledge on the functional traits of Mediterranean Q. suber, the approach has the limitation of requiring root sap flow data, which are seldom available. In this work, we present alternative methodologies to assess if trees are connected to groundwater and to estimate the soil and groundwater contributions to tree transpiration. We provide evidence on the tree unrestricted access to groundwater solely based on meteorological, stem sap flow and leaf water potential data. Using a soil mass balance approach, we estimated the yearly soil and groundwater contributions to tree transpiration: 69.7% and 30.3%, respectively. Groundwater uptake became dominant in the dry summer: 73.2% of tree transpiration. Results reproduce extremely well those derived from root modelling. Because of its simplicity both in formulation and data requirements, our approach is potentially liable to be adapted to other groundwaterdependent Mediterranean oak sites, where interactions between land use and water resources may be relevant.
Plant and Soil, 2006
Studies were conducted to examine changes in soil (Ψs) and plant water status during summer in a 16-year old Quercus suber plantation in southern Portugal. Continuous measurements were conducted between May 2003 and August 2004, while discontinuous measurements were conducted on a monthly basis between May and September 2003 and repeated between March and September 2004. Intensive measurements were conducted on five trees with mean height and DBH of 5.3 m and 11.6 cm, respectively, growing at close proximity to each other. Weather conditions and soil water potential (Ψs) at the rhizosphere of each of the trees measured at 0.3 and 1 m soil depth were continuously monitored. Predawn (Ψpd) and midday (Ψmd) leaf water potentials were determined every month. Soil and plant samples were also collected in June and September from different locations within the study site for δ18O isotope composition analysis. Pressure–volume (p–v) curves were constructed from plant shoots at different times during the vegetative period to determine osmotic potential at full saturation (Π100), water potential at turgor loss point (Ψtlp), relative water content at turgor loss point (R*tlp) and bulk modulus of elasticity (ε). Significant P < 0.05 decline in Ψs occurred between May and September, the lowest value recorded being –2.0 MPa. Decline in soil moisture affected tree water status, but decline in leaf water potential varied significantly (P < 0.05) among the trees. At the end of summer drought, lowest Ψpd measured was –1.7 MPa while the highest measured during this time was –0.8 MPa. Differences among trees were attributed to differences in rooting depth, as shown by regression analysis of 18O isotopes. Radial stem growth ceased when Ψs within the upper 0.3 m depth approached –1.5 MPa. The upper soil layers contributed approximately 33% of the total tree water requirement, between spring and mid summer when drought was experienced by trees. Deep soil layers however, supplied most of the water required during drought and no growth was recorded during this time. Stressed trees increased solute concentration of their tissues by a Magnitude of 0.7 MPa while bulk tissue elastic modulus increased by about 17 MPa. The study emphasizes the significance of roots as determinants of tree productivity and survival in the Mediterranean ecosystems.
Plant and Soil, 2006
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.
Tree Physiology, 2007
In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day -1 during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.
Forest Ecology and Management, 2016
Cork oak (Quercus suber L.) woodlands in the Mediterranean basin may cope with drought continuing to grow during the dry summer period. This growth pattern relies on the presence of extensive and deep root systems and on their access to groundwater. When the water table level is not within the reach of roots or decreases below a certain level following periods of drought, tree growth and survival might be affected. So far, little is known about the sensitivity and resilience of cork oak to both the rising and lowering of the water table over a long-term period, e.g., during one cork production cycle (9-10 years). In this study, we determined whether changes in groundwater levels influence cork growth in two cork oak woodlands located at the Tagus alluvium aquifer in southwestern Portugal. The selected areas have contrasting groundwater levels and an integrated framework was developed combining: (a) a standardized annual cork growth index series for tree (cork) growth assessment; (b) a monthly Standardized Precipitation Evapotranspiration Index (SPEI) for drought periods assessment and; (c) a Geographical Information System (GIS)-based model for mapping the mean water table depth in the dry period. Results showed a decrease of cork growth index (up to 40%) immediately following a severe drought, which lowered the water table in the dry period. Moreover, in the site with deeper groundwater levels the reduction of cork growth index was higher. The mean water table depth (in dry period) of À2.5 m was found to be a trigger value for cork growth. Our findings suggest that, under shallow water table conditions groundwater mitigates the seasonal fluctuations of precipitation and trees may use groundwater to decouple cork growth from the annual precipitation regime. We conclude that, under changing Mediterranean environments, with expected increase in drought events, the decrease of groundwater levels may severely affect cork (and tree) growth and ultimately tree survival. The management and conservation of cork oak woodlands should therefore rely on adequate policies for the sustainability of groundwater resources.
Tree Physiology, 2007
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m -2 s -1 , reducing transpiration from 6 to 2 mmol m -2 s -1 . Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.
Agricultural and Forest Meteorology, 1989
A hydrological model for the development of the soil-water content in a 120-year-old oak stand (Quercus petraea) is presented with a l-day time resolution. The model was conceived for working with daily potential evapotranspiration, throughfall and leaf area index data. It predicts transpiration from the dry canopy and soil-water content. The canopy is considered as a single leaf (the Penman-Monteith equation) which entails measurements of the physiological control of vapour flow from the leaf such as stomatal resistance (porometer), leaf water potential (pressure chamber), leaf area index, root distribution and soil-water potential (tensiometers). The model estimates the daily leafwater potential that controls the opening of the stomata which in turn regulate the transpiration flow by equating soil moisture abstraction and transpiration. The model was tested using data for the growing seasons of the Fontainebleu forest near Paris (France) in 1981, 1982 and 1983. Simulated transpiration and soil-water content correlated well with neutron probe measurements of the soil-water content. The model can be used for the quantification of tree water stress, which has numerous applications such as assessing stand productivity, disease and insect epidemic susceptibility, fire danger rating and nutrient cycling.
Agricultural and Forest Meteorology, 2014
This study details the physiological responses of cork oak (Quercus suber L.) to manipulated water inputs. Treatments named as dry, ambient and wet, which received 80, 100 and 120% of the annual precipitation, respectively, were applied to a Mediterranean woodland in southern Portugal. Tree ecophysiology and growth were monitored from 2003 to 2005.
Tree Physiology
Individual differences in the access to deep soil water pools may explain the differential damage among coexisting, conspecific trees as a consequence of drought-induced dieback. We addressed this issue by comparing the responses to a severe drought of three Mediterranean oak species with different drought tolerance, Quercus pubescens L. and Quercus frainetto Ten., mainly thriving at xeric and mesic sites, respectively, and Quercus cerris L., which dominates at intermediate sites. For each species, we compared coexisting declining (D) and non-declining (ND) trees. The stable isotope composition (δ2H, δ18O) of xylem and soil water was used to infer a differential use of soil water sources. We also measured tree size and radial growth to quantify the long-term divergence of wood production between D and ND trees and non-structural carbohydrates (NSCs) in sapwood to evaluate if D trees presented lower NSC values. The ND trees had access to deeper soil water than D trees except in Q. fr...
Annals of Forest Science, 2007
The spatial and temporal evolution of soil water content (θ) in Quercus ilex dehesas has been investigated to determine how trees modify the soil water dynamics and the nature of tree-grass interactions in terms of soil water use in these ecosystems. Soil physical parameters and θ were measured at different distances from the tree trunk (2−30 m) in the upper 300 cm of soil. θ was measured monthly by TDR during 2002−2005. Tree water potential was determined during the summers of 2004 and 2005. At deeper soil layers, mean θ values were higher beyond than beneath tree canopy during dry periods. θ depletion beyond tree canopy continued even in summer, when herbaceous plants dried up, suggesting that trees uptake water from the whole inter-tree space. Results have shown a high dependence of trees on deep water reserves throughout late spring and summer, which helps to avoid competition for water with herbaceous vegetation.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Forest Ecology and Management, 2013
Hydrological Processes, 2010
Carpathian Journal of Earth and Environmental Sciences, 2021
Global Change Biology, 2009
Agricultural and Forest Meteorology, 2004
Forest Ecology and Management, 2008