Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2002, Astronomy & Astrophysics
We present UBVRI light curves of BL Lacertae from May 2000 to January 2001, obtained by 24 telescopes in 11 countries. More than 15 000 observations were performed in that period, which was the extension of the Whole Earth Blazar Telescope (WEBT) campaign originally planned for July-August 2000. The exceptional sampling reached allows one to follow the flux behaviour in fine detail. Two different phases can be distinguished in the light curves: a first, relatively low-brightness phase is followed by an outburst phase, after a more than 1 mag brightening in a few weeks. Both the time duration (about 100 d) and the variation amplitude (roughly 0.9 mag) are similar in the two phases. Rapid flux oscillations are present all the time, involving variations up to a few tenths of mag on hour time scales, and witnessing an intense intraday activity of this source. In particular, a half-mag brightness decrease in about 7 h was detected on August 8-9, 2000, immediately followed by a ∼0.4 mag brightening in 1.7 h. Colour indexes have been derived by coupling the highest precision B and R data taken by the same instrument within 20 min and after subtracting the host galaxy contribution from the fluxes. The 620 indexes obtained show that the optical spectrum is weakly sensitive to the long-term trend, while it strictly follows the short-term flux behaviour, becoming bluer when the brightness increases. Thus, spectral changes are not related to the host galaxy contribution, but they are an intrinsic feature of fast flares. We suggest that the achromatic mechanism causing the long-term flux base-level modulation can be envisaged in a variation of the relativistic Doppler beaming factor, and that this variation is likely due to a change of the viewing angle. Discrete correlation function (DCF) analysis reveals the existence of a characteristic time scale of variability of ∼7 h in the light curve of the core WEBT campaign, while no measurable time delay between variations in the B and R bands is found.
Astronomy and Astrophysics, 2009
Abstract Context. Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the study of this huge dataset has been the search for correlations between the optical and radio flux variations, and for possible periodicities in the light curves. The analysis of the data ...
Astronomy & Astrophysics, 2010
Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the whole earth blazar telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (∼4-7%) flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability. Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen, with strong consequences on the source multiwavelength behaviour.
Astronomy & Astrophysics, 2006
Aims. We address the topic of the intra-night optical variability of the BL Lac object S5 0716+714. Methods. To this purpose a long-term observational campaign was carried out, from 1996 to 2003, which allowed the collection of a very large data set, containing 10 675 photometric measurements obtained in 102 nights. Results. The source brightness varied in a range of about 2 mag, although the majority of the observations were performed when it was in the range 13.0 < R < 13.75. Variability time scales were estimated from the rates of magnitude variation, which were found to have a distribution function well fitted by an exponential law with a mean value of 0.027 mag/h, corresponding to an e-folding time scale of the flux τ F = 37.6 h. The highest rates of magnitude variation were around 0.10-0.12 mag/h and lasted less than 2 h. These rates were observed only when the source had an R magnitude <13.4, but this finding cannot be considered significant because of the low statistical occurrence. The distribution of τ F has a well-defined modal value at 19 h. Assuming the recent estimate of the beaming factor δ ∼ 20, we derived a typical size of the emitting region of about 5 × 10 16 /(1 + z) cm. The possibility of searching for a possible correlation between the mean magnitude variation rate and the long-term changes in the velocity of the superluminal components in the jet is discussed.
Astrophysical Journal, 2003
BL Lacertae (BL Lac) was the target of an extensive multiwavelength monitoring campaign in the second half of 2000. Simultaneous or quasi-simultaneous observations were taken at radio (University of Michigan Radio Astronomy Observatory and Metsähovi Radio Telescope) and optical (Whole Earth Blazar Telescope [WEBT] collaboration) frequencies, in X-rays (BeppoSAX and RXTE), and at very high energy gamma rays (HEGRA). The WEBT optical campaign achieved an unprecedented time coverage, virtually continuous over several 10-20 hr segments. It revealed intraday variability on timescales of $1.5 hr and evidence for spectral hardening associated with increasing optical flux. During the campaign, BL Lac underwent a major transition from a rather quiescent state prior to 2000 September, to a flaring state for the rest of the year. This
The Astrophysical Journal, 1995
PKS 2155-304, the brightest BL Lac object in the ultraviolet sky, was monitored with the IUE satellite at ∼1 hour time-resolution for ten nearly uninterrupted days in May 1994. The campaign, which was coordinated with EUVE, ROSAT, and ASCA monitoring, along with optical and radio observations from the ground, yielded the largest set of spectra and the richest short time scale variability information ever gathered for a blazar at UV wavelengths. The source flared dramatically during the first day, with an increase by a factor ∼2.2 in an hour and a half. In subsequent days, the flux maintained a nearly constant level for ∼5 days, then flared with ∼35% amplitude for two days. The same variability was seen in both short-and long-wavelength IUE light curves, with zero formal lag ( < ∼ 2 hr), except during the rapid initial flare, when the variations were not resolved. Spectral index variations were small and not clearly correlated with flux. The flux variability observed in the present monitoring is so rapid that for the first time, based on the UV emission alone, the traditional ∆L/∆t limit indicating relativistic beaming is exceeded. The most rapid variations, under the likely assumption of synchrotron radiation, lead to a lower limit of 1 G on the magnetic field strength in the UV emitting region. These results are compared with earlier intensive monitoring of PKS 2155-304 with IUE in November 1991, when the UV flux variations had completely different characteristics.
2010
Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability.
Astronomy & Astrophysics, 2004
BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present $UBVRI$ light curves obtained by the WEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the $\sim 15600$ observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a few-day time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a $\sim 0.1$ bluer-when-brighter slope in the $B-R$ versus $R$ plane; a steeper slope of $\sim 0.4$ would distinguish the shorter-term variations. This means that, when considering the long-term trend, the $B$-band flux level is related to the $R$-band one according to a power law of index $\sim 1.1$. Doppler factor variations on a "convex" spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.
We present results of two-colour photometry with high time resolution of the violently variable BL Lac object AO 0235+164. We have found extreme intranight variability with amplitudes of ∼ 100% over time scales of 24 hours. Changes of 0.5 magnitudes in both R and V bands were measured within a single night, and variations up to 1.2 magnitudes occurred from night to night. A complete outburst with an amplitude ∼ 30% was observed during one of the nights, while the spectrum remained unchanged. This seems to support an origin based on a thin relativistic shock propagating in such a way that it changes the viewing angle, as recently suggested by Kraus et al. (1999) and Qian et al. (2000).
Astronomy & Astrophysics, 2006
BL Lacertae has been the target of several observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration and is one of the best studied blazars at all accessible wavelengths. A recent analysis of the optical and radio variability indicates that part of the radio variability is correlated with the optical light curve. Here we present an analysis of a
Astronomy and Astrophysics, 2001
The BL Lacertae object AO 0235+16 is well known for its extreme optical and radio variability. New optical and radio data have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source: on the long term, overall variations of 5 mag in the R band and up to a factor 18 in the radio fluxes were detected, while short-term variability up to 0.5 mag in a few hours and 1.3 mag in one day was observed in the optical band. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997, involving a dozen optical observatories. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection and Discrete Correlation Function (DCF) analysis. On the long term, the autocorrelation function of the optical data shows a double-peaked maximum at 4100-4200 days (11.2-11.5 years), while a double-peaked maximum at 3900-4200 days (10.7-11.5 years) is visible in the radio autocorrelation functions. The existence of this similar characteristic time scale of variability in the two bands is by itself an indication of optical-radio correlation. A further analysis by means of Discrete Fourier Transform (DFT) technique and folded light curves reveals that the major radio outbursts repeat quasi-regularly with a periodicity of ∼ 5.7 years, i.e. half the above time scale. This period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them. Visual inspection and DCF analysis of the optical and radio light curves then reveal that in some cases optical outbursts seem to be simultaneous with radio ones, but in other cases they lead the radio events. Moreover, a deep inspection of the radio light curves suggests that in at least two occasions (the 1992-1993 and 1998 outbursts) flux variations at the higher frequencies may have led those at the lower ones.
2004
We present optical light curves for the period 1996-2000, of two of the brightest known EGRET BL Lac objects: PKS 2005-489 and PKS 2155-304, the latter also one of the few known TeV sources. For both objects, quiescent epochs of low level of variability were followed by active periods, without any indication of periodicity. In PKS 2005-489, several variability events with duration of about 20 days were observed. In PKS 2155-304 fast drops and subsequent rises in luminosity occurred in time scales of days. We proposed an explanation in which a region moving along the relativistic jet is eclipsed by broad line region clouds or star clusters in the host galaxy. We compare our light curves with contemporaneous X-ray observations from All-Sky Monitor/RXTE. Correlations between optical and X-ray activity were not found in any of the sources at long time scales. However in PKS 2005-489 possible correlations were observed in 1997 and 1998 at short time scales, with optical variability preceding X-rays by 30 days in 1997 and succeeding them by about 10 days in 1998. The analysis of the SED, using the optical data presented here and BeppoSAX contemporaneous observations obtained from the literature, shows only small shifts in the synchrotron peak as the X-ray flux density changes.
Astronomy & Astrophysics, 2009
Context. BL Lacertae is the prototype of the blazar subclass named after it. Yet, it has occasionally shown a peculiar behaviour that has questioned a simple interpretation of its broad-band emission in terms of synchrotron plus synchrotron self-Compton (SSC) radiation. Aims. In the 2007-2008 observing season we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite in July and December 2007, and January 2008, to study its emission properties, particularly in the optical-X-ray energy range. Methods. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. Flux changes had larger amplitude at the higher radio frequencies than at longer wavelengths. Results. The X-ray spectra acquired by the EPIC instrument onboard XMM-Newton are well fitted by a power law with photon index Γ ∼ 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the EPIC data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is very variable, since it can change from extremely steep to extremely hard, and can be more or less curved in intermediate states. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature > ∼ 20 000 K and a luminosity > ∼ 6 × 10 44 erg s −1 .
Astronomy and Astrophysics, 2002
2 Ravasio et al.: The X-ray spectrum of BL Lacertae Abstract. We report on two BeppoSAX observations of BL Lac (2200+420) performed respectively in June and December 1999, as part of a ToO program to monitor blazars in high states of activity. During both runs the source has been detected up to 100 keV, but it showed quite different spectra: in June it was concave with a very hard component above 5-6 keV (α1 ∼ 1.6; α2 ∼ 0.15); in December it was well fitted by a single power law (α ∼ 0.6). During the first BeppoSAX observation BL Lac showed an astonishing variability episode: the 0.3 − 2 keV flux doubled in ∼ 20 minutes, while the flux above 4 keV was almost contant. This frequency-dependent event is one of the shortest ever recordered for BL Lac objects and places lower limits on the dimension and magnetic field of the emitting region and on the energy of the synchrotron radiating electrons.
The Astronomical Journal, 2005
We present the historic light curve of the BL Lac object S5 0716+714, spanning the time interval from 1953 to 2003, built using Asiago archive plates and our recent CCD observations, together with literature data. The source shows an evident long term variability, over which well known short term variations are superposed. In particular, in the period from 1961 to 1983 the mean brightness of S5 0716+714 remained significantly fainter than that observed after 1994. Assuming a constant variation rate of the mean magnitude we can estimate a value of about 0.11 magnitude/year. The simultaneous occurrence of decreasing ejection velocities of superluminal moving components in the jet reported by Bach et al. (2005) suggests that both phenomena are related to the change of the direction of the jet to the line of sight from about 5 to 0.7 degrees for an approximately constant bulk Lorentz factor of about 12. A simple explanation is that of a precessing relativistic jet, which should presently be close to the smallest orientation angle. One can therefore expect in the next ten years a decrease of the mean brightness of about 1 magnitude.
Monthly Notices of the Royal Astronomical Society, 2012
We report results from a one-week multiwavelength campaign to monitor the BL Lacertae object (BL Lac) S5 0716+714 (on 2009 December 9-16). Nine ground-based telescopes at widely separated longitudes and one space-based telescope aboard the Swift satellite collected optical data. Radio data were obtained from the Effelsberg and Urumqi observatories and X-ray data from Swift. In the radio bands, the source shows rapid [∼(0.5-1.5) d] intraday variability with peak amplitudes of up to ∼10 per cent. The variability at 2.8 cm leads by about 1 d the variability at 6 and 11 cm. This time lag and more rapid variations suggest an intrinsic contribution to the source's intraday variability at 2.8 cm, while at 6 and 11 cm, interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ∼0.8 mag were detected in the V, R and I bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 d timescale , favouring reprocessed inverse Compton over synchrotron radiation in this band. The characteristic variability timescales in radio and optical
Astronomy & Astrophysics, 2003
Eight optical and four radio observatories have been intensively monitoring the BL Lac object 0716+714 in the last years: 4854 data points have been collected in the UBVRI bands since 1994, while radio light curves extend back to 1978. Many of these data, which all together constitute the widest optical and radio database available on this object, are presented here for the first time. Four major optical outbursts were observed at the beginning of 1995, in late 1997, at the end of 2000, and in fall 2001. In particular, an exceptional brightening of 2.3 mag in 9 days was detected in the R band just before the BeppoSAX pointing of October 30, 2000. A big radio outburst lasted from early 1998 to the end of 1999. The long-term trend shown by the optical light curves seems to vary with a characteristic time scale of about 3.3 years, while a longer period of 5.5-6 years seems to characterize the radio long-term variations. In general, optical colour indices are only weakly correlated with brightness; a clear spectral steepening trend was observed during at least one long-lasting dimming phase. Moreover, the optical spectrum became steeper after JD ∼ 2 451 000, the change occurring in the decaying phase of the late-1997 outburst. The radio flux behaviour at different frequencies is similar, but the flux variation amplitude decreases with increasing wavelength. The radio spectral index varies with brightness (harder when brighter), but the radio fluxes seem to be the sum of two different-spectrum contributions: a steady base level and a harder-spectrum variable component. Once the base level is removed, the radio variations appear as essentially achromatic, similarly to the optical behaviour. Flux variations at the higher radio frequencies lead the lower-frequency ones with week-month time scales. The behaviour of the optical and radio light curves is quite different, the broad radio outbursts not corresponding in time to the faster optical ones and the cross-correlation analysis indicating only weak correlation with long time lags. However, minor radio flux enhancements simultaneous with the major optical flares can be recognized, which may imply that the mechanism producing the strong flux increases in the optical band also marginally affects the radio one. On the contrary, the process responsible for the big radio outbursts does not seem to affect the optical emission.
Monthly Notices of the Royal Astronomical Society, 2015
We present the results of extensive multiband intranight optical monitoring of BL Lacertae during 2010-2012. BL Lacertae was very active in this period and showed intense variability in almost all wavelengths. We extensively observed it for a total for 38 nights; on 26 of them, observations were done quasi-simultaneously in B, V, R and I bands (totalling 113 light curves), with an average sampling interval of around 8 min. BL Lacertae showed significant variations on hour-like timescales in a total of 19 nights in different optical bands. We did not find any evidence for periodicities or characteristic variability timescales in the light curves. The intranight variability amplitude is generally greater at higher frequencies and decreases as the source flux increases. We found spectral variations in BL Lacertae in the sense that the optical spectrum becomes flatter as the flux increases but in several flaring states, deviates from the linear trend suggesting different jet components contributing to the emission at different times.
Astronomy and Astrophysics, 2009
Context. BL Lacertae is the prototype of the blazar subclass named after it. Yet, it has occasionally shown a peculiar behaviour that has questioned a simple interpretation of its broad-band emission in terms of synchrotron plus synchrotron self-Compton (SSC) radiation. Aims. In the 2007-2008 observing season we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite in July and December 2007, and January 2008, to study its emission properties, particularly in the optical-X-ray energy range. Methods. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. Flux changes had larger amplitude at the higher radio frequencies than at longer wavelengths. Results. The X-ray spectra acquired by the EPIC instrument onboard XMM-Newton are well fitted by a power law with photon index Γ ∼ 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the EPIC data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is very variable, since it can change from extremely steep to extremely hard, and can be more or less curved in intermediate states. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature > ∼ 20 000 K and a luminosity > ∼ 6 × 10 44 erg s −1 .
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.