Academia.eduAcademia.edu

Simultaneous Statistical Inference in Dynamic Factor Models

2016, Time Series Analysis and Forecasting

Abstract

Based on the theory of multiple statistical hypothesis testing, we elaborate simultaneous statistical inference methods in dynamic factor models. In particular, we employ structural properties of multivariate chi-squared distributions in order to construct critical regions for vectors of likelihood ratio statistics in such models. In this, we make use of the asymptotic distribution of the vector of test statistics for large sample sizes, assuming that the model is identified and model restrictions are testable. Examples of important multiple test problems in dynamic factor models demonstrate the relevance of the proposed methods for practical applications.