Academia.eduAcademia.edu

Rotational symmetry and degeneracy: a cotangent-perturbed rigid rotator of unperturbed level multiplicity

2011, Molecular Physics

Abstract

We predict level degeneracy of the rotational type in diatomic molecules described by means of a cotangent-hindered rigid rotator. The problem is shown to be exactly solvable in terms of non-classical Romanovski polynomials. The energies of such a system are linear combinations of t(t + 1) and 1/[t(t + 1) + 1/4] terms with the non-negative integer principal quantum number t = n + | m| being the sum of the order n of the polynomials and the absolute value, | m|, of the square root of the separation constant between the polar and azimuthal angular motions. The latter obeys with respect to t same branching rule, | m| = 0, 1, ..., t, as does the magnetic quantum number with respect to the angular momentum, l, and in this fashion the t quantum number presents itself formally indistinguishable from l. In effect, the spectrum of the hindered rotator has the same (2t + 1)-fold level multiplicity as the unperturbed one. For low t values wave functions and excitation energies of the perturbed rotator differ from the ordinary spherical harmonics, and the l(l + 1) law, respectively, while approaching them asymptotically with the increase of t. In this fashion the breaking of the rotational symmetry at the level of the representation functions is opaqued by the level degeneracies. The model furthermore provides a tool for the description of rotational bands with anomalously large gaps between the ground state and its first excitation.