Academia.eduAcademia.edu

Quantum Mollow Quadruplet in Nonlinear Cavity QED

2022, Physical Review Letters

Abstract

We develop an exact analytical approach to the optical response of a quantum dot-microcavity system for arbitrary excitation strengths. The response is determined in terms of the complex amplitudes of transitions between the rungs of the Jaynes-Cummings ladder, explicitly isolating nonlinearities of different orders. Increasing the pulse area of the excitation field, we demonstrate the formation of a quantum Mollow quadruplet (QMQ), quantizing the semi-classical Mollow triplet into a coherent superposition of a large number of transitions between rungs of the ladder, with inner and outer doublets of the QMQ formed by densely lying inner and outer quantum transitions between the split rungs. Remarkably, a closed-form analytic approximation for the QMQ of any order of nonlinearity is found in the high-field low-damping limit.