Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2006, The European Physical Journal D
…
2 pages
1 file
There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls, et al., leads to reactors compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability (adiabat shaping) and implosion symmetry required to achieve these high fuel densities will be discussed. Examples of symmetry control for targets driven by Z-pinches or heavy ion beams are given. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described. If these innovations are successful, the fusion specific capital costs can be reduced below 10% of the balance of plant.
1996
Thisisapreprintofapaper intended forpublicationina journalorptoceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
1994
Research on inertial fusion has made steady progress in recent years [l-31, and the world's fusion community is ready for the next series of inertial fusion experiments, which will approach and achieve ignition. These next experiments include the OMEGA Upgrade laser nearing completion at the University of Rochester Laboratory for Laser Energetics [4], the GEKKO XII Upgrade experiment being planned at the Osaka University Institute of Laser Engineering [5], the National Ignition Facility being designed in the USA [6], and the Megajoule laser being planned in France [7]. Key parameters for these facilities are summarized on Table I. Table I-Machine Parameters and Experiment Schedule for OMEGA Upgrade, GEKKO XII Upgrade, NIF and Megajoule Facility Laser No. Beams Uniformity Operation status OMEGA Nd:glass 30 kJ, 60 c2%rms April 1995 Built Upgrade 40 TW at 351 nm Cryo: 6/98 GEKKO XII Nd:glass 300 kJ, 96 0.5%
Nuclear Fusion, 2013
Controlled thermonuclear ignition and subsequent burn will be demonstrated in a couple of years on the central ignition scheme. Fast ignition has the high potential to ignite a fuel using only about one tenth of laser energy necessary to the central ignition. This compactness may largely accelerate inertial fusion energy development. One of the most advanced fast ignition programs is the Fast Ignition Realization Experiment (FIREX) [1]. The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I from late 2010 to early 2011 has demonstrated a high (≈20%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that one can achieve the ignition temperature at the laser energy below 10 kJ. Given the demonstrations of the ignition temperature at FIREX-I and the ignition-and-burn at the National Ignition Facility [2], the inertial fusion research would then shift from the plasma physics era to power generation era.
Fusion Engineering and Design, 1995
Plasma Physics and Controlled Fusion, 2006
Recent advances in hydrodynamics theory and experiments at the Laboratory for Laser Energetics are described. Particular emphasis is laid on improvements in the implosion stability achieved by shaping the ablator adiabat and on the newly developed designs for fast ignition fuel assembly. The results of twodimensional simulations and a recent set of implosion experiments on OMEGA are presented to verify the role of adiabat shaping on the hydrodynamic stability of direct-drive implosions. Adiabat shaping laser pulses are also used to implode massive capsules on a low adiabat and low implosion velocity in order to assemble high density plasmas for fast ignition. The areal densities measured in implosion experiments of such targets on OMEGA are among the highest ever recorded in a laser-driven compression experiment. Slow low-adiabat implosions of massive wetted-foam DT capsules are used in the simulations to generate the fuel assemblies for different driver energies. Such dense cores are then ignited by a fast electron beam and the resulting thermonuclear yield is used to compute the target gain. It is shown that a 200 kJ UV laser can
Physics Today, 1992
For the past four decades, scientists throughout the world have pursued the dream of controlled thermonuclear fusion. The attraction of this goal is the enormous energy that is potentially available in fusion fuels and the view of fusion as a safe, clean energy source. The fusion reaction with the highest cross section uses the deuterium and tritium isotopes of hydrogen, and D-T would be the fuel of choice for the first generation of fusion reactors. (See the article by J. Geoffrey Cordey, Robert J. Goldston and Ronald R. Parker, January, page 22.)
Nuclear Fusion, 2009
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments.
Journal of Physics: Conference Series, 2010
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
2002
Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term roadmap for FI is defined.
Plasma Physics and Controlled Fusion, 2011
This paper presents the goals and some of the results of experiments conducted within the Working Package 10 (Fusion Experimental Programme) of the HiPER Project. These experiments concern the study of the physics connected to 'advanced ignition schemes', i.e. the fast ignition and the shock ignition approaches to inertial fusion. Such schemes are aimed at achieving a higher gain, as compared with the classical approach which is used in NIF, as required for future reactors, and make fusion possible with smaller facilities.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Fusion Engineering and Design, 1994
Fusion Science and Technology
Journal of Fusion Energy, 2003
Physics of Plasmas, 2008
Nuclear Fusion, 2014
Journal of Fusion Energy, 1994
Fusion Engineering and Design, 2002
Nuclear Fusion, 2019
Journal of Fusion Energy, 1991