Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Central European Journal of Geosciences, 2014
This paper explores the potential of using satellite radar inteferometry to monitor time-varying land movement prior to any visible tension crack signs. The idea was developed during dedicated geotechnical studies at a large open-pit lignite mine, where large slope movements (10–20 mm/day) were monitored and large fissures were observed in the immediate area outside the current pit limits. In this work, differential interferometry (DInSAR), using Synthetic Aperture Radar (SAR) ALOS images, was applied to monitor the progression of land movement that could potentially thwart mine operations. Early signs of land movements were captured by this technique well before their visual observation. Moreover, a qualitative comparison of DInSAR and ground geodetic measurements indicates that the technique can be used for the identification of high risk areas and, subsequently, for the optimization of the spatial distribution of the available ground monitoring equipment. Finally, quantitative la...
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Natural Hazards, 2016
Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. This paper presents a subset of
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Geosciences, 2020
During the past 10 years, Timor-Leste has concentrated all its efforts on infrastructure development. However, it has not achieved enough due to unexpected ground deformation in mountainous areas that is seriously affecting road constructions, etc. In order to design roads and other infrastructure under such difficult conditions, it is important to know the present and future ground conditions. Continuous monitoring is a significant methods of detecting ground deformation and providing essential information to realize an effective design. The problem arises of “How can ground deformation be monitored in extensive areas, which are generally located in mountain areas that are difficult to access?” Differential Interferometry Synthetic Aperture Radar (DInSAR) has recently been applied to monitor displacement in extensive areas. In addition, Unmanned Aerial Vehicle (UAV) photogrammetry is useful for detecting the deformation in detail. Both methods are advantageous in that they do not r...
Remote Sensing of Environment, 2013
In this work it is demonstrated how the combination of multi-sensor and multi-temporal SAR data improves the monitoring capacity of very slow landslides. The study area is the Upper Tena Valley (Central Spanish Pyrenees), where mostly very slow earth flows, have caused direct damage estimated at approximately 15 M€ in the last decade. The advanced DInSAR processing of ascending orbit ALOS PALSAR images (2006)(2007)(2008)(2009)(2010) and descending orbit ERS & Envisat (2001-2007 and TerraSAR-X (2008) datasets, has provided heterogeneous displacement velocity measurements. The projection along the steepest slope of LOS displacements reduces the geometrical differences introduced by each satellite. These results were compared and validated with available D-GPS measurements. In a second step PS displacement data are combined with a landslide inventory, increasing the number of monitored landslides with sufficient PS from 4% to 19%, obtained from C-and X-band data, to 38% of the total (294). Finally, the retrieved multi-sensor landslides velocities are classified with respect to the magnitude of road damages that occurred in the 2008-2010 period. At local scale, the combination of multi-sensor data was useful to differentiate different landslide displacement directions, to measure different velocity patterns within the same moving mass, and to distinguish the slower (natural) and faster (human induced) landslides. The analysis of displacement time series permitted to evaluate the acceleration caused by a destabilising anthropogenic change, and the correlation between displacement variability and seasonal precipitation and melting.
CATENA
Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been repeatedly proved as an effective tool for monitoring built environments affected by geological hazards. In this paper, it is described how the Coherent Pixel Technique (CPT) approach has been successfully applied to assess the response of an unstable slope to the different phases of remedial works following a landslide event. The CPT technique was performed on 59 COSMO-SkyMed images (May 2011-August 2016) centered on the Quercianella settlement (a small hamlet of Livorno municipality, Tuscany, Italy), where the reactivation of a dormant shallow slide had occurred in March 2011 and, hereafter, a geotechnical intervention, designed with the aim of mitigating the risks, has been conducted from August 2013 lasting thirteen months. The time series of CPT results show a deformation pattern characterized by sudden accelerations (up to 21 mm in few months) in correspondence of the beginning of the interventions, during which the area has been excavated to install a drainage well, followed by mild decelerations and resulting from the stabilization of the area after the conclusion of the works. In particular, the integration of ground-based subsurface monitoring (inclinometers and piezometers) and DInSAR superficial data have provided consistent results for landslide characterization and helped in defining the state of activity and the areal distribution of the sliding surface. Moreover, the performance of remedial works installed in the landslide-affected area has been observed, showing the stabilization in the upper part of the hamlet and the still ongoing movement in the lower part. The combined monitoring system led 2 also the geotechnical company in charge to design further stabilization works as to preserve buildings and roads in the still moving area. Therefore, the integration of remote sensing techniques and in situ instruments represents a timely and cost-efficient solution for monitoring intervention works, opening new perspectives to engineering design for the stabilization of unstable slopes.
This paper seeks to demonstrate that radar-based remote sensing techniques are as effective as conventional geotechnical ones for geo-hazard assessment and mitigation. Concretely, this work encourages the proper combination of differential synthetic aperture radar (SAR) interferometry (DInSAR) results, using high-resolution X-band SAR data coming from orbital and ground-based SAR sensors, for the efficient monitoring of slow-moving landslides.
Remote sensing is being frequently applied in recent years to monitor slope instability phenomena. Since satellite images cover wide territories with frequent passages, their use seems to be extremely promising in terms of landslide monitoring. Among the different techniques proposed, the Permanent Scatterers (PS) technique is a multi-interferogram approach for processing SAR data that allows to overcome the limitations of the traditional DInSAR. In the present paper, some preliminary considerations are developed, deriving from the use of the PS technique in a small town of Campania region, Italy, where some slow-moving complex landslides affect the urban area. The SAR data have been relieved from the ERS-1 and ERS-2 sensors of the European Space Agency in the 1992-2001 time span. The SAR data are being compared with field evidence of structural damages to urban buildings and infrastructures, in view of further field-based observations, integrated with classical site monitoring data.
Environmental Earth Sciences, 2018
Instabilities are extremely common in the iron open-pit mines located in the Carajás mineral province, the world´s largest iron reserves located in the Brazilian Amazon. Due to deep excavations in rock products of low geomechanical quality, heavy precipitation, and blasting practices, mining operations in the area present surface displacements that potentially lead to slope instabilities with several risks (personnel, equipment, mining infrastructure, etc.). This paper presents the results related to the N5E mine based on DInSAR Time Series (DTS) and Persistent Scatterer Interferometry (PSI) using a temporal series of 33 StripMap TerraSAR-X (SM TSX) images, and geological information provided from a 3D photointerpretation of an SM TSX and Ultra-Fine RADARSAT-2 (UF RST) stereo-pair, calibrated with field data. Measurement point (DTS, PSI) results were compared with in situ geodetic survey information (total station/prism measurements) and showed good agreement indicating that most of the mine can be considered stable during the period of the TSX coverage. The highest accumulated displacements were spatially related to a thematic unit mapped as a landfill. For other sectors of the mine, lower deformation rates were related to photointerpreted lineaments related to the Carajás fault system suggesting that geological structures can play a key role in controlling some surface displacements. The investigation demonstrated that the strategy based on the use of DTS and PSI techniques integrated with geological data provided a synoptic view of the deformation process that affected the mine. The approach was relevant for ground displacements monitoring of the study area with DInSAR results compared with in situ geodetic measurements showing good statistical correlation.
Proceedings of the 4th Regional Symposium on Landslides in the Adriatic - Balkan Region, 2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
2019
Monitoring is important for assessing the stability of the ground and for confirming the validity of the design during the construction and operation of structures. The ideal monitoring system for projects in Rock and Geotechnical Engineering would be able to monitor the behavior of small to extensive areas continuously and automatically with high accuracy. In addition, the costs would be low and the system would be easy to handle. Satellite technology has the potential to realize the above monitoring system by combining it with conventional geotechnical instruments. In this paper, satellite technology for displacement monitoring, i.e., GPS and SAR, is firstly outlined and then the concept of spatiotemporal continuous displacement monitoring is introduced. The use of both satellite technology and geotechnical instruments is effective for geotechnical monitoring. Practical applications of GPS for landslide monitoring and collaborative researches using DInSAR with Balkan countries are described.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.