Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2010, Shock and Vibration
…
307 pages
1 file
This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying crosssectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output) on beam shape optimization problems is also discussed.
Shock and Vibration, 2014
This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying crosssectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output) on beam shape optimization problems is also discussed.
We aim at using variable shape cantilever beam to improve the efficiency of energy harvesting from ambient vibration in wireless grid sensor applications. The cantilever beam is composed of an active layer composed of a piezoelectric material and a metallic layer (unimorph design). A tip mass attached to the free end of the cantilever beam is added to increase the inertial forces of the structure. The introduction of the variable shape design is motivated by the fact that prismatic shape beams are not efficient since only the part near to the clamped side can produce electrical power thanks to the presence of stresses. By varying the geometry of the beam we redistribute the stress along the beam's length in order to increase the harvested power. In this work, the equations of motion and associated boundary conditions are derived using Hamilton Principle. We analyze the statics and dynamics of the variable geometry beam. In order to maximize the harvested energy, we discuss the influence of the system's and excitation's parameters on the dynamic problem. Besides, we found that harvested energy is maximized for an optimum electric load resistance. Concerning the beam's shape, this work reveals that it should be as truncated as possible. In fact, trapezoidal cantilever with base and height dimensions equal to the base and length dimensions of a rectangular beam will have a higher strain and maximum deflection for a given load.
Structural and Multidisciplinary Optimization, 2020
Piezoelectric cantilever beams are among the most popular vibration energy harvesting devices. Homogenization of the spatial distribution of axial strain along those beams increases harvesting efficiency. The general approach to minimize axial strain variation is to use triangular or trapezoidal width profiles. In this study, a width profile function that includes curved shapes is proposed and a finite element-based optimization scheme is constructed to maximize harvesting efficiency. A distribution parameter is defined for quantifying the strain uniformity. Optimization is performed for various tip mass values, using this parameter as the objective function. It is shown that curved beam profiles exhibit less variation in axial strain, compared to triangular and rectangular beams. Optimized shapes for minimal strain variation at resonance are determined. Experimental results also validate the findings of the optimization. At least 22% increase in strain uniformity is obtained with the optimized-shaped beam, compared to a triangular beam when no tip mass is used. The increase in strain uniformity becomes 29% when the tip mass is increased to 5 g. The results indicate the potential of employing beam-type piezoelectric energy harvesters with optimized width profiles.
Piezoelectric energy harvesting devices are attracting interest to minimize the consumption and use of batteries which are considered expensive, harmful to the environment, and have limited life. The modification of the properties of the structural material and geometrical shape of a piezoelectric harvester can be of interest to increase the output power and broaden the frequency bandwidth. One possible approach of improving the performance of energy harvesters is to use energy harvester with dynamic magnifier (EHDM) which is described in this work by employing a piezoelectric unimorph cantilever (PVDF) integrated at the end of a structural cantilever beam. A model of the system is developed which can be considered as coupled linear resonators which can be solved approximately using a lumped parameter model. A carbon fiber reinforced plastic (CFRP) cantilever beam has been connected to the piezoelectric harvester element and the output voltage and power have been investigated both experimentally and theoretically. The output voltage and power at optimal resistance was 1.08 V and 2.73 μW respectively at the first resonance frequency of approximately 49 Hz of a single UCB. Also, the output voltage and average power at optimal resistance was 1.18 V and 2.78 μW respectively at first resonance frequency of 54 Hz, at the second resonance frequency of 120 Hz was 0.43 V and 0.36 μW, respectively of a UCB with magnifier beam. Finally, comparisons between the experimental results of coupled beam or EHDM and theoretical results of coupled linear oscillators showed a good agreement of a first and second peak under specific conditions.
Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler-Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.
Journal of Vibration and Acoustics
Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are ...
Institute of Physics
A new electromechanical finite element modelling of a vibration power harvester and its validation with experimental studies are presented in this paper. The new contributions for modelling the electromechanical finite element piezoelectric unimorph beam with tip mass offset under base excitation encompass five major solution techniques. These include the electromechanical discretization, kinematic equations, coupled field equations, Lagrangian electromechanical dynamic equations and orthonormalized global matrix and scalar forms of electromechanical finite element dynamic equations. Such techniques have not been rigorously modelled previously by other researchers. There are also benefits to presenting the numerical techniques proposed in this paper. First, the proposed numerical techniques can be used for applications in many different geometrical models, including micro-electro-mechanical system power harvesting devices. Second, applying tip mass offset located after the end of the piezoelectric beam length can result in a very practical design, which avoids direct contact with piezoelectric material because of its brittle nature. Since the surfaces of actual piezoelectric material are covered evenly with thin conducting electrodes for generating single voltage, we introduce the new electromechanical discretization, consisting of the mechanical and electrical discretized elements. Moreover, the reduced electromechanical finite element dynamic equations can be further formulated to obtain the series form of new multimode electromechanical frequency response functions of the displacement, velocity, voltage, current and power, including optimal power harvesting. The normalized numerical strain node and eigenmode shapes are also further formulated using numerical discretization. Finally, the parametric numerical case studies of the piezoelectric unimorph beam under a resistive shunt circuit show good agreement with the experimental studies.
Energy supply from piezoelectric material using environmental vibrations is very attractive because they possess more mechanical energy for conversion into electrical energy and can withstand large amount of strain also. Such vibration energy harvester extracts maximum energy from environment when natural frequency of taper beam matches with natural frequency of environment. This paper presents a review on power generation in taper cantilever beam at different tip mass position. In this paper we reviewed the work carried out by researchers on piezoelectric power generation.
Journal of the Korean Physical Society, 2020
In the field of piezoelectric energy harvesting, a cantilever is widely used in a piezoelectric energy harvester (PEH) because it easily deforms under various forces and, generally, the output of the cantilever increases proportionally with the deformation. Naturally, many previous studies focused on how to obtain a higher PEH output. However, the power of the input source is limited, so the efficiency of the PEH must be maximized. In this study, based on the amount of input energy, the existence of an optimal efficiency of energy conversion in the PEH was researched. A plate-type PEH was first installed as the cantilever, and various masses were suspended from the free end of the PEH by using a thread. Next, the thread was cut while the PEH was in a bending state. Immediately, the PEH began vibrating with the input energy being the potential energy of the bent PEH, and the output was obtained. A maximum efficiency of 15.58% was determined in three ways: via the output electrical energy (0.46 mJ), the input potential energy (2.94 mJ), and the deflection value (at a free end position of 3.75 mm). Finally, the existence of the optimal efficiency based on the amount of input energy was found in this PEH.
Journal of Vibration and Acoustics, 2009
For the past five years, cantilevered beams with piezoceramic layer(s) have been frequently used as piezoelectric energy harvesters for vibration-to-electric energy conversion. Typically, the energy harvester beam is located on a vibrating host structure and the dynamic strain induced in the piezoceramic layer(s) results in an alternating voltage output across the electrodes. Vibration modes of a cantilevered piezoelectric energy harvester other than the fundamental mode have certain strain nodes where the dynamic strain distribution changes sign in the direction of beam length. It is theoretically explained and experimentally demonstrated in this paper that covering the strain nodes of vibration modes with continuous electrodes results in strong cancellations of the electrical outputs. A detailed dimensionless analysis is given for predicting the locations of the strain nodes of a cantilevered beam in the absence and presence of a tip mass. Since the cancellation issue is not pecul...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Materials Today: Proceedings, 2017
Journal of Intelligent Material Systems and Structures, 2014
Mechanical System and Signal Processing, 2013
Journal of Sound and Vibration, 2009
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2018
The European Physical Journal Special Topics, 2015
Journal of Vibration Engineering & Technologies, 2024
Journal of Intelligent …, 2012
IEEE Transactions on Electron Devices, 2018
Smart Materials and Structures, 2015
Ferroelectrics, 2018
Mechanical Engineering Scientific Journal, 2023
Environmental Engineering Science, 2020
Advances in Science and Technology Research Journal
IEEE Sensors Journal, 2018
International Journal of Nanoparticles, 2020
Active and Passive Smart Structures and Integrated Systems 2009, 2009
Indonesian Journal of Electrical Engineering and Computer Science, 2018
IEEE Sensors Journal, 2018
michael.friswell.com