Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Biometrics
Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.
The Annals of Statistics, 2012
Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.
2012
Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.
Journal of the American Statistical Association, 2014
Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient model (SVCM) to spatially model the varying association between imaging measures in a threedimensional (3D) volume (or 2D surface) with a set of covariates. Two key features of most neuorimaging data are the presence of multiple piecewise smooth regions with unknown edges and jumps and substantial spatial correlations. To specifically account for these two features, SVCM includes a measurement model with multiple varying coefficient functions, a jumping surface model for each varying coefficient function, and a functional principal component model. We develop a three-stage estimation procedure to simultaneously estimate the varying coefficient functions and the spatial correlations. The estimation procedure includes a fast multiscale adaptive estimation and testing procedure to independently estimate each varying coefficient function, while preserving its edges among different piecewise-smooth regions. We systematically investigate the asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. We also establish the uniform convergence rate of the estimated spatial covariance function and its associated eigenvalue and eigenfunctions. Our Monte Carlo simulation and real data analysis have confirmed the excellent performance of SVCM.
Journal of the American Statistical Association, 2017
Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient single index model (FVCSIM) to carry out the regression analysis of functional response data on a set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single index models for scalar responses collected from cross-sectional and longitudinal studies. An efficient estimation procedure is developed to iteratively estimate varying coefficient functions, link functions, index parameter vectors, and the covariance function of individual functions. We systematically examine the asymptotic properties of all estimators including the weak convergence of the estimated varying coefficient functions, the asymptotic distribution of the estimated index parameter vectors, and the uniform convergence rate of the estimated covariance function and their spectrum. Simulation studies are carried out to assess the finite-sample performance of the proposed procedure. We apply FVCSIM to investigating the development of white matter diffusivities along the corpus callosum skeleton obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
Biometrics, 2016
Recently, massive functional data have been widely collected over space across a set of grid points in various imaging studies. It is interesting to correlate functional data with various clinical variables, such as age and gender, in order to address scientific questions of interest. The aim of this paper is to develop a single-index varying coefficient (SIVC) model for establishing a varying association between functional responses (e.g., image) and a set of covariates. It enjoys several unique features of both varying-coefficient and single-index models. An estimation procedure is developed to estimate varying coefficient functions, the index function, and the covariance function of individual functions. The optimal integration of information across different grid points are systematically delineated and the asymptotic properties (e.g., consistency and convergence rate) of all estimators are examined. Simulation studies are conducted to assess the finite-sample performance of the proposed estimation procedure. Furthermore, our real data analysis of a white matter tract dataset obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study confirms the advantage and accuracy of SIVC model over the popular varying coefficient model.
The Annals of Applied Statistics, 2013
Diffusion tensor imaging provides important information on tissue structure and orientation of fiber tracts in brain white matter in vivo. It results in diffusion tensors, which are 3×3 symmetric positive definite (SPD) matrices, along fiber bundles. This paper develops a functional data analysis framework to model diffusion tensors along fiber tracts as functional data in a Riemannian manifold with a set of covariates of interest, such as age and gender. We propose a statistical model with varying coefficient functions to characterize the dynamic association between functional SPD matrix-valued responses and covariates. We calculate weighted least squares estimators of the varying coefficient functions for the Log-Euclidean metric in the space of SPD matrices. We also develop a global test statistic to test specific hypotheses about these coefficient functions and construct their simultaneous confidence bands. Simulated data are further used to examine the finite sample performance of the estimated varying coefficient functions. We apply our model to study potential gender differences and find a statistically significant aspect of the development of diffusion tensors along the right internal capsule tract in a clinical study of neurodevelopment.
2013 IEEE 10th International Symposium on Biomedical Imaging, 2013
The human brain undergoes rapid organization and structuring early in life. Longitudinal imaging enables the study of these changes over a developmental period within individuals through estimation of population growth trajectory and its variability. In this paper, we focus on maturation of white and gray matter as is depicted in structural and diffusion MRI of healthy subjects with repeated scans. We provide a framework for joint analysis of both structural MRI and DTI (Diffusion Tensor Imaging) using multivariate nonlinear mixed effect modeling of temporal changes. Our framework constructs normative growth models for all the modalities that take into account the correlation among the modalities and individuals, along with estimation of the variability of the population trends. We apply our method to study early brain development, and to our knowledge this is the first multimodel longitudinal modeling of diffusion and signal intensity changes for this growth stage. Results show the potential of our framework to study growth trajectories, as well as neurodevelopmental disorders through comparison against the constructed normative models of multimodal 4D MRI.
Lecture Notes in Computer Science, 2010
Diffusion tensor imaging (DTI) is important for characterizing the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. There has been extensive interest in the analysis of diffusion properties measured along fiber tracts as a function of age, diagnostic status, and gender, while controlling for other clinical variables. However, the existing methods have several limitations including the independent analysis of diffusion properties, a lack of method for accounting for multiple covariates, and a lack of formal statistical inference, such as estimation theory and hypothesis testing. This paper presents a statistical framework, called VCMTS, to specifically address these limitations. The VCMTS framework consists of four integrated components: a varying coefficient model for characterizing the association between fiber bundle diffusion properties and a set of covariates, the local polynomial kernel method for estimating smoothed multiple diffusion properties along individual fiber bundles, global and local test statistics for testing hypotheses of interest along fiber tracts, and a resampling method for approximating the p−value of the global test statistic. The proposed methodology is applied to characterizing the development of four diffusion properties along the splenium and genu of the corpus callosum tract in a study of neurodevelopment in healthy rhesus monkeys. Significant time effects on the four diffusion properties were found.
Biometrics, 2008
In this article we develop a nonparametric estimation procedure for the varying coefficient model when the within-subject covariance is unknown. Extending the idea of iterative reweighted least squares to the functional setting, we iterate between estimating the coefficients conditional on the covariance and estimating the functional covariance conditional on the coefficients. Smoothing splines for correlated errors are used to estimate the functional coefficients with smoothing parameters selected via the generalized maximum likelihood. The covariance is nonparametrically estimated using a penalized estimator with smoothing parameters chosen via a Kullback-Leibler criterion. Empirical properties of the proposed method are demonstrated in simulations and the method is applied to the data collected from an ovarian tumor study in mice to analyze the effects of different chemotherapy treatments on the volumes of two classes of tumors.
Neural Computation, 2005
In neuroimaging studies of human cognitive abilities, brain activation patterns that include regions that are strongly interactive in response to experimental task demands are of particular interest. Among the existing network analyses, partial least squares (PLS; McIntosh, 1999; McIntosh, Bookstein, Haxby, & Grady, 1996) has been highly successful, particularly in identifying group differences in regional functional connectivity, including differences as diverse as those associated with states of awareness and normal aging. However, we address the need for a within-group model that identifies patterns of regional functional connectivity that exhibit sustained activity across graduated changes in task parameters. For example, predictions of sustained connectivity are commonplace in studies of cognition that involve a series of tasks over which task difficulty increases (Baddeley, 2003). We designed ordinal trend analysis (OrT) to identify activation patterns that increase monotonically in their expression as the experimental task parameter increases, while the correlative relationships between brain regions remain constant. Of specific interest are patterns that express positive ordinal trends on a subject-by-subject basis. A unique feature of OrT is that it recovers information about functional connectivity based solely on experimental design variables. In particular, there is no requirement by OrT to provide either a quantitative model of the uncertain relationship between functional brain circuitry and subject variables (e.g., task performance and IQ) or partial information about the regions that are functionally connected. In this letter, we provide a step-by-step recipe of the computations performed in the new OrT analysis, including a description of the inferential statistical methods applied. Second, we describe applications of OrT to an event-related fMRI study of verbal working memory and H 2 15 O-PET study of visuomotor learning. In sum, OrT has potential applications to not only studies of young adults and their cognitive abilities, but also studies of normal aging and neurological and psychiatric disease.
2011
Abstract. This paper develops a functional data analysis framework to model diffusion tensors along fiber bundles as functional responses with a set of covariates of interest, such as age, diagnostic status and gender. This framework has a wide range of clinical applications including the characterization of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles.
This paper studies estimation of a smooth function f (x, v) when we are given functional responses of the form f (x, ·) + error, but scientific interest centers on the collection of functions f (·, v) for different v. The motivation comes from studies of human brain development, in which x denotes age whereas v refers to brain locations. Analogously to varying-coefficient models, in which the mean response is linear in x, the "varying-smoother" models that we consider exhibit nonlinear dependence on x that varies smoothly with v. We discuss three approaches to estimating varying-smoother models: (a) methods that employ a tensor product penalty; (b) an approach based on smoothed functional principal component scores; and (c) two-step methods consisting of an initial smooth with respect to x at each v, followed by a postprocessing step. For the first approach, we derive an exact expression for a penalty proposed by Wood, and an adaptive penalty that allows smoothness to vary more flexibly with v. We also develop "pointwise degrees of freedom," a new tool for studying the complexity of estimates of f (·, v) at each v. The three approaches to varying-smoother models are compared in simulations and with a diffusion tensor imaging data set.
2012
For multivariate data, dependence beyond pair-wise can be important. This is true, for example, in using functional MRI (fMRI) data to investigate brain functional connectivity. When one has more than a few variables, however, the number of simple summaries of even third-order dependence can be unmanageably large. "Concurrence topology" is an apparently new nonparametric method for describing high-order dependence among up to dozens of dichotomous variables (e.g., seventh-order dependence in 32 variables). This method generally produces summaries of p th-order dependence of manageable size no matter how big p is. (But computing time can be lengthy.) For time series, this method can be applied in both the time and Fourier domains. Write each observation as a vector of 0's and 1's. A "concurrence" is a group of variables all "1" in the same observation. The collection of concurrences can be represented as a sequence of shapes ("filtration"). Holes in the filtration indicate weak or negative association among the variables. The pattern of the holes in the filtration can be analyzed using computational topology. This method is demonstrated on dichotomized fMRI data. The dataset includes subjects diagnosed with ADHD and healthy controls. In an exploratory analysis numerous group differences in the topology of the filtrations are found.
NeuroImage, 2012
We propose a semiparametric Bayesian local functional model (BFM) for the analysis of multiple diffusion properties (e.g., fractional anisotropy) along white matter fiber bundles with a set of covariates of interest, such as age and gender. BFM accounts for heterogeneity in the shape of the fiber bundle diffusion properties among subjects, while allowing the impact of the covariates to vary across subjects. A nonparametric Bayesian LPP2 prior facilitates global and local borrowings of information among subjects, while an infinite factor model flexibly represents low-dimensional structure. Local hypothesis testing and credible bands are developed to identify fiber segments, along which multiple diffusion properties are significantly associated with covariates of interest, while controlling for multiple comparisons. Moreover, BFM naturally group subjects into more homogeneous clusters. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFM. We apply BFM to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment in new born infants.
Lecture Notes in Computer Science, 2013
Many longitudinal imaging studies have been/are being widely conducted to use diffusion tensor imaging (DTI) to better understand white matter maturation in normal controls and diseased subjects. There is an urgent demand for the development of statistical methods for analyzing diffusion properties along major fiber tracts obtained from longitudinal DTI studies. Jointly analyzing fiber-tract diffusion properties and covariates from longitudinal studies raises several major challenges including (i) infinite-dimensional functional response data, (ii) complex spatialtemporal correlation structure, and (iii) complex spatial smoothness. To address these challenges, this article is to develop a longitudinal functional analysis framework (LFAF) to delineate the dynamic changes of diffusion properties along major fiber tracts and their association with a set of covariates of interest (e.g., age and group status) and the structure of the variability of these white matter tract properties in various longitudinal studies. Our LFAF consists of a functional mixed effects model for addressing all three challenges, an efficient method for spatially smoothing varying coefficient functions, an estimation method for estimating the spatial-temporal correlation structure, a test procedure with a global test statistic for testing hypotheses of interest associated with functional response, and a simultaneous confidence band for quantifying the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of LFAF and to demonstrate that LFAF significantly outperforms a voxel-wise mixed model method. We apply LFAF to study the spatial-temporal dynamics of white-matter fiber tracts in a clinical study of neurodevelopment.
2013
Many longitudinal imaging studies have collected repeated diffusion tensor magnetic resonance imaging data to understand white matter maturation and structural connectivity pattern in normal controls and diseased subjects. There is an urgent demand for the development of statistical methods for the analysis of diffusion properties along fiber tracts and clinical data obtained from longitudinal studies. Jointly analyzing repeated fiber-tract diffusion properties and covariates (e.g., age or gender) raises several major challenges including (i) infinite-dimensional functional response data, (ii) complex spatial-temporal correlation structure, and (iii) complex spatial smoothness. To address these challenges, this article is to develop a functional mixed effects modeling (FMEM) framework to delineate the dynamic changes of diffusion properties along major fiber tracts and their association with a set of covariates of interest and the structure of the variability of these white matter tract properties in various longitudinal studies. Our FMEM consists of a functional mixed effects model for addressing all three challenges, an efficient method for spatially smoothing varying coefficient functions, an estimation method for estimating the spatial-temporal correlation structure, a test procedure with local and global test statistics for testing hypotheses of interest associated with functional response, and a simultaneous confidence band for quantifying the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FMEM and to demonstrate that FMEM significantly
Normative modeling aims to quantify the degree to which an individual's brain deviates from a reference sample with respect to one or more variables, which can be used as a potential biomarker of a healthy brain and as a tool to study heterogeneity of psychiatric disorders. The application of normative models is hindered by methodological challenges and lacks standards for the usage and evaluation of normative models. In this paper, we present generalized additive models for location scale and shape (GAMLSS) for normative modeling of neuroimaging data, a flexible modeling framework that can model heteroskedasticity, non-linear effects of variables, and hierarchical structure of the data. It can model non-Gaussian distributions, and it allows for an automatic model order selection, thus improving the accuracy of normative models while mitigating problems of overfitting. Furthermore, we describe measures and diagnostic tools suitable for evaluating normative models and step-by-ste...
The Annals of Statistics, 2015
In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423-1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this paper, we propose estimation and inference procedures for the GACM when the dimension of the variables is high. Specifically, we propose a groupwise penalization based procedure to distinguish significant covariates for the "large p small n" setting. The procedure is shown to be consistent for model structure identification. Further, we construct simultaneous confidence bands for the coefficient functions in the selected model based on a refined two-step spline estimator. We also discuss how to choose the tuning parameters. To estimate the standard deviation of the functional estimator, we adopt the smoothed bootstrap method. We conduct simulation experiments to evaluate the numerical performance of the proposed methods and analyze an obesity data set from a genome-wide association study as an illustration.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 2019
Neurobiological data such as EEG measurements pose a statistical challenge due to low spatial resolution and poor signal-to-noise ratio, as well as large variability from subject to subject. We propose a new modeling framework for this type of data based on stochastic processes. Stochastic differential equations with mixed effects are a popular framework for modeling biomedical data, e.g., in pharmacological studies. While the inherent stochasticity of diffusion models accounts for prevalent model uncertainty or misspecification, random effects take care of the inter-subject variability. The 2-layer stochasticity, however, renders parameter inference challenging. This is especially true for more complex model dynamics, and only few theoretical investigations on the asymptotic behavior of estimates exist. This article adds to filling this gap by examining asymptotics (number of subjects going to infinity) of Maximum Likelihood estimators in multidimensional, nonlinear and non-homogeneous stochastic differential equations with random effects and included covariates. Estimates are based on the discretized continuous-time likelihood and we investigate finite-sample and discretization bias. In applications, the comparison of, e.g., different experimental conditions such as placebo vs. treatment, is often of interest. We suggest a hypothesis testing approach and evaluate the test's performance by simulations. Finally, we apply the framework to a statistical investigation of EEG recordings from epileptic patients.
Statistical Modelling
Bivariate ordered logistic models (BOLMs) are appealing to jointly model the marginal distribution of two ordered responses and their association, given a set of covariates. When the number of categories of the responses increases, the number of global odds ratios to be estimated also increases, and estimation gets problematic. In this work we propose a non-parametric approach for the maximum likelihood (ML) estimation of a BOLM, wherein penalties to the differences between adjacent row and column effects are applied. Our proposal is then compared to the Goodman and Dale models. Some simulation results as well as analyses of two real data sets are presented and discussed.
International Journal of Environmental Research and Public Health, 2016
Background: Birth weight is an important health parameter for obstetricians and gynaecologists. It is a good health indicator of a child-bearing mother and a strong predictor of infant morbidity and mortality. Methods: This paper utilizes data on 28,647 children born between 2003-2008 obtained from the 2008 Nigeria Demographic and Health Survey (NDHS). For a simple epidemiological convenience, the occurrence of a newborn weight can intuitively be considered to be categorical in nature and the thresholds can be put on a continuous scale. In survey reporting, the mothers frequently estimate their infant's birth weight and make a classification in ordinal category (low, normal, large) instead of actual birth weight. The study fits a multinomial regression model to analyze the relationships between the polytomous response and different kind of covariates in a unified manner. We estimate the fixed effects of bio-social covariates parametrically and the non-linear effect modeled using P-spline. The spatial component was modeled using conditional autoregressive error. A penalized maximum likelihood estimation was performed to estimate the model parameters. Results: We found risk factors that are positively associated with low birth weight, which include multiple birth, short birth interval, death of sibling, childhood diarrhea, fever, mother's smoking, firewood/dung cooking and poor household. Results further showed that iron syrup supplementation, antenatal attendance, mother literacy and household wealth had significant association with low probability of low birth weight. The finding also showed spatial patterns, which are not captured by the underlying determinants, and we produced probability predictive maps of the spatial residual effects. Conclusions: In addition to the statistical relevance of our method, the generated spatial maps identify highly endemic areas of low birth weight that can assist government agency to channel scarce health resources. A comprehensive approach which institutes a combination of interventions to improve the overall health care of the women is needed.
Journal of Applied Statistics, 2015
The academic success of students is a priority for all universities. We analyze the students' success at university by considering their performance in terms of both "qualitative performance", measured by their mean grade, and "quantitative performance", measured by university credits accumulated. The data comes from an Italian University and concerns a cohort of students enrolled at the Faculty of Economics. To jointly model both the marginal relationships and the association structure with covariates, we fit a bivariate ordered logistic model by penalized maximum likelihood estimation. The penalty term we use allows us to smooth the association structure and enlarge the range of possible parameterizations beyond that provided by the usual Dale model. The advantages of our approach are also in terms of parsimony and parameter interpretation, while preserving the goodness of fit.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.