Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
1996, Journal of Applied Mechanics
This paper presents a potential flow model for the leading edge vortex over a two-dimensional flat plate at an angle of attack. The paper is an extension of a model by Saffman and Sheffield (1977). A sink has been added in this model in an effort to satisfy the Kutta condition at both the leading edge and the trailing edge of the plate. The introduction of the sink was inspired by the fact that most steady vortices in nature appear in combination with a flow feature which can be interpreted as a sink at their cores when the flow is analyzed in a two-dimensional observation plane. As in the Saffman and Sheffield model, the presence of a vortex results in increased lift; however, in the current model a unique vortex/sink position is found at each angle of attack. A comparison has also been made between the lift and the drag of this model and the corresponding results for two classical solutions of flow over a flat plate: (a) the fully attached flow with the Kutta condition satisfied a...
Vortex shedding flow from a flat plate inclined to a uniform flow at an angle of attack between 20 degrees and 45 degrees is simulated with a finite volume CFD code with RNG k-epsilon turbulence model. The unsteady flow simulation at Re=2x10(4) with RANS shows two trains of vortices shed from the two different edges of the plate forming a vortex street in the wake of the plate. The computed results provide support to previous experimental observations that in this asymmetric flow geometry, the two trains of vortices in the vortex street possess different vortex strengths. There is further evidence that the vortex from the plate leading edge is actually shed from a location near the trailing end of the plate. The computed flow at successive phases of a vortex shedding cycle show different development and shedding mechanisms for the two trains of vortices. The study also explores the generation mechanism of the fluctuating lift and drag on the plate and its relationship with the vortex shedding processes. Keywords: CFD; vortices; inclined flat plate; circular cylinder
Flapping and revolving wings can produce attached leading-edge vortices when the angle of attack is large. In this work, a low-order model is proposed for the edge vortices that develop on a revolving plate at 90 • angle of attack, which is the simplest limiting case, yet shows remarkable similarity with the generally known leading-edge vortices. The problem is solved analytically, providing short closed-form expressions for the circulation and the position of the vortex. The good agreement with the numerical solution of the Navier–Stokes equations suggests that, for the conditions examined, the vorticity production at the sharp edge and its subsequent three-dimensional transport are the main effects that shape the edge vortex.
Fluids
Based on the numerical and experimental visualization methods, the flow patterns around a uniformly moving plate located at an arbitrary angle of attack are studied. The study is based on the fundamental equations of continuity, momentum and stratifying substance transport for the cases of strong and weak stratified fluids, as well as potential and actually homogeneous ones. The visualization technique and computation codes were compiled bearing in mind conditions of internal waves, vortices, upstream, and downstream wakes registration, as well as the resolution of ligaments in the form of thin interfaces in schlieren flow images. The analysis was carried out in a unified mathematical formulation for a wide range of plate motion parameters, including slow diffusion-induced flows and fast transient vortex flows. The patterns of formation and subsequent evolution of the basic structural components, such as upstream disturbances, downstream wake, internal waves, vortices, and ligaments...
34th AIAA Applied Aerodynamics Conference, 2016
MATEC web of conferences, 2018
2D3C TR-PIV technique was utilized to investigate streamwise-oriented vortical structures behind an inclined flat plate. The angle of attack was set to 7 deg, several fields of view in the wake were investigated. The instantaneous velocity vector fields were captured, dynamics of the flow was studied using POD method. The streamwise structures are determined by vorticity and low-and high-velocity streaks are defined. The acquired results are in a good agreement with the new hypothesis of a principle of flight.
Journal of Flow Control, Measurement & Visualization, 2014
The use of leading edge with different geometrical patterns will affect the development of boundary layer flow on a flat plate and its heat transfer properties. In this work, the effects of three patterns namely saw-tooth, semicircular and slots with same wavelength and amplitude were examined. The experiments were carried out for Reynolds number based on wavelength of patterns ranging from 1540 to 3850. For all cases, after each valley, an oval shape region was formed containing a counter-rotating vortex pair. It is also shown that for the flat plate with slots, another vortex was visualized between each valley.
Experimental Thermal and Fluid Science, 2017
Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.
International Journal of Heat and Fluid Flow, 2016
We have considered the three-dimensional wake behind a cross formed by two intersecting flat plates using direct numerical simulations. The Reynolds number based on the uniform inflow velocity U 0 and the plate width d was 10 0 0. The vortex shedding in the wake was totally suppressed in a 4d wide intersection region and this gave rise to a massive zone of recirculating flow. Quasi two-dimensional vortex shedding with a primary frequency 0.165 U 0 /d occurred behind the outer branches more than 7d from the intersection. The wake behind the outer branches of the crossing plates closely resembled the wake behind a single flat plate. However, the wake flow in an intermediate region (located between the intersection region and the outer branches) was affected by persistent secondary flows. Further, shear-layer (K-H) instabilities have been observed in this region. The mean wake structure revealed the formation of four symmetrically positioned pairs of swirling vortices close to the intersection corner next to the plate's edges.
2008
The flow around two plates having asymmetric beveled trailing edge placed side-by-side in a uniform stream were investigated both numerically and experimentally. Two plates with spacing ratio of 1.0 and beveled trailing edge of angle 20 o were tested at Reynolds numbers equal to 3.97×10 4. The numerical simulation results displayed that the flow separates on one plate beveled trailing edge surface. The vortex formation and shedding from this plate led to deflecting the flow toward the other plate and consequently the wake behind the plates showed an asymmetric development. The photographs obtained from the flow visualization confirmed the numerical results concerning the flow separation and vortex formation. It was also found that the computed pressure distribution on the two plate surfaces was different, particularly on the beveled trailing edge surfaces and on the flat sides.
Journal of Fluids and Structures, 2005
Previous investigations have shown that flows around rectangular plates with transverse forcing involve interactions between vortices shed from the leading and trailing edges and vortex merging in the wakes. The Strouhal number of vortex shedding at which peak base drag occurs varies with chord-to-thickness ratio in a stepwise fashion, similar to the self-sustained oscillations at low Reynolds number for unforced flows. In the present study, the leading edge flow separation and vortex shedding is eliminated by using plates with elliptical leading edges, and the trailing edge flow is examined through particle image velocimetry. In particular, the response of the trailing-edge vortex shedding and the base pressure coefficient to applied transverse oscillations of different Strouhal number and amplitude is measured. Substantial variation in the base pressure coefficient is found, with peaks appearing at the natural shedding frequency and at a harmonic. The effect of the forcing on the wake dimension and the strength of the wake vortices is quantified using particle image velocimetry. Three-dimensional structures in addition to the two-dimensional Ka´rma´n vortices in the wake are also visualized.
Journal of Wind Engineering and Industrial Aerodynamics, 1993
This paper presents an experimental investigation of the vortex shedding in the wake of blunt and oblique trailing edge hydrofoils at high Reynolds number, Re=5 10 5 -2.9 10 6 . The velocity field in the wake is surveyed with the help of Particle-Image-Velocimetry, PIV, using Proper-Orthogonal-Decomposition, POD. Besides, flow induced vibration measurements and high-speed visualization are performed. The high-speed visualization clearly shows that the oblique trailing edge leads to a spatial phase shift of the upper and lower vortices at their generation stage, resulting their partial cancellation. For the oblique trailing edge geometry and in comparison with the blunt one, the vortex-induced vibrations are significantly reduced. Moreover, PIV data reveals a lower vorticity for the oblique trailing edge. The phase shift between upper and lower vortices, introduced by the oblique truncation of the trailing edge, is found to vanish in the far wake, where alternate shedding is recovered as observed with the blunt trailing edge. The phase shift generated by the oblique trailing edge and the resulting partial cancellation of the vortices is believed to be the main reason of the vibration reduction. Hydrofoil chord m b Hydrofoil span m h Hydrofoil trailing edge thickness m C ref
Experiments in Fluids, 2010
Motivated by the unsteady force generation of flying animals, vortex formation and vorticity transport processes around small aspect-ratio translating and rotating plates with a high angle of attack are investigated. Defocusing Digital Particle Image Velocimetry was employed to explore the structure and dynamics of the vortex generated by the plates. For both translating and rotating cases, we observe the presence of a spanwise flow over the plate and the consequent effect of vorticity transport due to the tilting of the leading-edge vortex. While the spanwise flow is confined inside the leading-edge vortex for the translating case, it is widely present over the plate and the wake region of the rotating case. The distribution of the spanwise flow is a prominent distinction between the vortex structures of these two cases. As the Reynolds number decreases, due to the increase in viscosity, the leading-edge and tip vortices tend to spread inside the area swept by the rotating plate. The different vorticity distributions of the low and high Reynolds number cases are consistent with the difference in measured lift forces, which is confirmed using the vorticity moment theory.
Springer Proceedings in Physics, 2009
Journal of Physics: Conference Series, 2018
The motivation of the presented study is supporting new ideas about principle of flight by Hoffman and Johnson, see [1]. The new hypothesis of physical mechanism of flight relies on existence of streamwise vortical structures on the suction side of the airfoil and within its wake. The vortices origin is supposed to be the instability of the boundary layer subjected to adverse pressure gradient. The vortices are of highly dynamical nature, changing theirs position, size and other parameters in time very rapidly. For this experiment the simplest airfoil possible was chosen represented by a flat plate in uniform flow and moderate angle of attack. In the suggested paper detailed measurement of the zone of interest will be carried out using stereo PIV method. System of measuring planes perpendicular to the flow will be explored. POD analysis is to be utilized.
International Conference on Aerospace Sciences and Aviation Technology
The evolution of a two-dimensional, incompressible, rapidly decelerating, viscous flow about a sharp-edged camber is simulated through the use of discrete-vortex method. An extensive study of the velocity field in the vicinity of the singular points led to the development of a novel method for the introduction of vorticity. The roll-up of the vortex sheets, the distribution of velocity and the pressure on the camber, and the drag force are calculated and compared with experiments.
Journal of Visualization, 2016
A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ=2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the "mushroom-like" vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.
Mechanics & Industry, 2019
The aim of this paper is to study the physics related to lift generation on an airfoil. A new hypothesis [1] of physical mechanism of flight relies on existence of streamwise vortical structures above the wing and inside the wake. The vortices origin as a consequence of flow instability inside the boundary layer developed under adverse pressure gradient. These structures are highly dynamical in nature, they change position and size very rapidly. A simple airfoil in the form of a flat plate with moderate angle of attack is considered in the presented research that generates suitable flow at rather low Reynolds number. Stereo PIV time resolved measurement technique is used to capture high-dynamic data in several planes which are located in the wake and are perpendicular to freestream or parallel to the airfoil. The overall image of the flow field dynamics will be created using POD decomposition. Distinct flow patterns with associated kinetic energy are to be described as well as their role in the studied case. Existence of streamwise vorticity is proved, topology and other parameters are estimated in the paper; however related pressures and forces are not evaluated.
Iraqi Journal of Market Research and Consumer Protection, 2021
This paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (C D) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles. The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into account the interference between two pairs of VGs. The effect of the changing in (h-the height of vortex generator, d-the average distance between tow vortex generators) on the thickness of the flat plate boundary layer and the drag coefficients has been studied for triangular vortex generator. The measurements of the vortex generator have been changed to determine the optimum boundary layer thickness and the change in drag coefficients. An experiment was done at an average free stream velocity, (U ∞ ,) of 28 m/s. The experiment was conducted in the wind tunnel UTAD-2 University (NAU) Kiev, Ukraine.
Energies
Flow separation is the source of several problems in a wind turbine including load fluctuations, lift losses, and vibrations. Vortex generators (VGs) are passive flow control devices used to delay flow separation, but their implementation may produce overload drag at the blade section where they are placed. In the current work, a computational model of different geometries of vortex generators placed on a flat plate has been carried out throughout fully meshed computational simulations using Reynolds Averaged Navier-Stokes (RANS) equations performed at a Reynolds number of R e θ = 2600 based on local boundary layer (BL) momentum thickness θ = 2.4 mm. A flow characterization of the wake behind the vortex generator has been done with the aim of evaluating the performance of three vortex generator geometries, namely Rectangular VG, Triangular VG, and Symmetrical VG NACA0012. The location of the primary vortex has been evaluated by the vertical and lateral trajectories and it has been f...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.