Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2017, Artificial Organs
Journal of Engineering and Technological Sciences, 2021
Extracorporeal blood oxygenation has become an alternative to supply O2 and remove CO2 from the bloodstream, especially when mechanical ventilation provides insufficient oxygenation. The use of a membrane oxygenator offers the advantage of lower airway pressure than a mechanical ventilator to deliver oxygen to the patient’s blood. However, research and development are still needed to find appropriate membrane materials, module configuration, and to optimize hydrodynamic conditions for achieving high efficient gas transfer and excellent biocompatibility of the membrane oxygenator. This review aims to provide a comprehensive description of the basic principle of the membrane oxygenator and its development. It also discusses the role and challenges in the use of membrane oxygenators for extracorporeal oxygenation on respiratory and cardiac failure patients.
Hollow fiber contactors are successfully used as blood oxygenators in extracorporeal membrane oxygenation (ECMO); the optimization of these devices relies on a full comprehension of transport mechanisms involving respiratory gasses. This phenomenon is not clearly understood although it strongly affects blood oxygenators’ performance. This work presents a model for countercorrent ECMO oxygenators, accounting for both membrane wetting and chemical reactions occurring in these systems. In the first part of the paper, the theoretical framework is presented; later, membrane wetting is analyzed and it is shown its effect on the overall mass transfer coefficients. Namely, it comes to light that membrane wetting strongly reduces membrane performances in terms of gasses transport and of respiratory quotient.
Artificial Organs, 1994
Abstract: In vitro testing of a new prototype intravenous membrane oxygenator (IMO) is reported. The new IMO design consists of matted hollow fiber membranes arranged around a centrally positioned tripartite balloon. Short gas flow paths and consistent, reproducible fiber geometry after insertion of the device result in an augmented oxygen flux of up to 800% with balloon activation compared with the static mode (balloon off). Operation of the new IMO device with the balloon on versus the balloon off results in a 400% increase in carbon dioxide flux. Gas flow rates of up to 9. 5 L/min through the 14–cm–long hollow fibers have been achieved with vacuum pressures of 250 mm Hg. Gas exchange efficiency for intravenous membrane oxygenators can be increased by emphasizing the following design features: short gas flow paths, consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of blood around the hollow fiber membranes
Membranes
Extracorporeal membrane oxygenators are essential medical devices for the treatment of patients with respiratory failure. A promising approach to improve oxygenator performance is the use of microstructured hollow fiber membranes that increase the available gas exchange surface area. However, by altering the traditional circular fiber shape, the risk of low flow, stagnating zones that obstruct mass transfer and encourage thrombus formation, may increase. Finding an optimal fiber shape is therefore a significant task. In this study, experimentally validated computational fluid dynamics simulations were used to investigate transverse flow within fiber packings of circular and microstructured fiber geometries. A numerical model was applied to calculate the local Sherwood number on the membrane surface, allowing for qualitative comparison of gas exchange capacities in low-velocity areas caused by the microstructured geometries. These adverse flow structures lead to a tradeoff between in...
The journal of medical investigation : JMI, 2002
Currently in United States, there are no clinically-applicable hollow fiber extracorporeal membrane oxygenation (ECMO) oxygenators available. Therefore, our laboratory is in the process of developing a silicone hollow fiber membrane oxygenator for long-term ECMO usage. This oxygenator incorporates an ultrathin silicone hollow fiber. At this time, a specially-modified blood flow distributor (one chamber distributor) is centered in the module to prevent blood stagnation. An ex vivo long-term durability test for ECMO was performed using a healthy miniature calf for 2 weeks. Venous blood was drained from the left jugular vein of a calf, passed through the oxygenator and infused into the left carotid artery using a Gyro C1E3 centrifugal blood pump. A successful 2-week ex vivo experiment was performed. The O2 and CO2 gas transfer rates were maintained at the same value of 40 m/min at a blood flow rate of 1 L/min flow and V/Q=3 (V=gas flow rate; Q=blood flow rate). The plasma free hemoglob...
ASAIO Journal, 2008
Bioline-coated polymethylpentene (PMP) membrane oxygenators (MO) are used for extracorporeal membrane oxygenation (ECMO) to improve gas exchange in patients with severe acute respiratory distress syndrome (ARDS). However, in some patients, long-term durability is limited due to fibrous and cellular accumulations on the gas exchange surface which can increase resistance to blood flow and diffusion path. These surface deposits of PMP MO after removal were studied with scanning electron and fluorescence microscopy techniques. Three of 31 patients supported by a PMP MO in an ECMO setting required a replacement of the oxygenator after a mean support interval of 11 ؎ 7 days due to an increase in flow resistance and an impairment of the gas exchange capacity. The membrane surface of the MO was covered with a fibrous network with imbedded platelets and red blood cells. A membranous structure composed of single cells and clusters of cells covered large areas of the PMP fibers. We assume that these cellular deposits lower the efficacy of ECMO. The identification of these cells could be a key for future therapeutic interventions and improvements in the development of MO.
PubMed, 1997
Two models of heparin coated, hollow fiber membrane oxygenators were tested in vitro to compare gas transfer and transoxygenator pressure drop using an established protocol. Oxygen and carbon dioxide transfer rates were measured at blood flows of 2.5 and 5.0 liters per minute with gas flow: blood flow ratios of 1:1 and 2:1 at both blood flows. All testing was performed under normothermic conditions. The data shows that oxygen transfer increases as blood flow is increased in both oxygenators. Similarly, carbon dioxide transfer is increased by both increased blood and gas flows. Finally, the pressure drop was dependent on blood flow rate alone. This study demonstrated these two oxygenators to be comparable in both oxygen and carbon dioxide transfer and also in transoxygenator pressure drop.
Perfusion
With ongoing progress of components of extracorporeal membrane oxygenation including improvements of oxygenators, pumps, and coating materials, extracorporeal membrane oxygenation became increasingly accepted in the clinical practice. A suitable testing in an adequate setup is essential for the development of new technical aspects. Relevant tests can be conducted in ex vivo models specifically designed to test certain aspects. Different setups have been used in the past for specific research questions. We conducted a systematic literature review of ex vivo models of extracorporeal membrane oxygenation components. MEDLINE and Embase were searched between January 1996 and October 2017. The inclusion criteria were ex vivo models including features of extracorporeal membrane oxygenation technology. The exclusion criteria were clinical studies, abstracts, studies in which the model of extracorporeal membrane oxygenation has been reported previously, and studies not reporting on extracorp...
Journal of Polymer Research
Extracorporeal membrane oxygenator (ECMO) is a valuable technology to support people with acute respiratory distress syndrome (ARDS) and is recommended for COVID-19 patients. This study aims to fabricate polymer-based composite membranes coated with ethylcellulose nanoparticles from waste paper and identify the performance of the composite as ECMO candidates. Composite membranes were made from four types of polymers, namely, nylon, PTFE (polytetrafluoroethylene), Pebax ® MH-1657, and SBS (poly-(styrene-b-butadiene-b-styrene)). PDMS (polydimethylsiloxane) 1 wt.% and ethylcellulose nanoparticles (3% and 10 wt.%) were used as membrane coatings to increase their hydrophobic properties. The success of cellulose isolation and ethylcellulose synthesis from waste paper was confirmed by the FTIR and XRD analysis. The size of the synthesized ethylcellulose nanoparticles was 32.68 nm. The coating effect on composite membranes was studied by measuring the contact angle, membrane porosity, protein quantification tests, and single gas permeation of O 2 and CO 2. Based on the protein quantification test, the protein could not pass through the Pebax/PDMS and SBS/PDMS composites coated with 10 wt.% ethylcellulose; this indicated less risk of plasma leakage. The gas permeation test on nylon/PDMS, PTFE/PDMS, and SBS/PDMS composites coated with 10% ethylcellulose resulted high CO 2 /O 2 selectivity, respectively, 2.17, 3.48, and 3.22 as good indication for extracorporeal oxygenation membrane.
EasyChair Preprints, 2019
A custom-made set-up was constructed and optimized for the measurement of the gas permeation properties of membranes at constant temperature. Integral asymmetric membranes and dense symmetric membranes of poly(ester urethane urea) were synthetized and characterized in terms of: i) structure by Scanning Electron Microscopy (SEM), and ii) gas permeation properties for N2, CO2 and O2 in the custom-made set-up. The membranes were synthesized by a modified version of the phase inversion technique where polyurethane and polycaprolactone-diol prepolymers react in a solvent mixture of dimethyl formamide and diethyl ether. The total polymer to solvent weight ratio, the solvent evaporation time and the polycaprolactone quantity were varied.
Frontiers in Bioengineering and Biotechnology, 2020
resistance to breakthrough; the presence of surfactants in the patient's blood (e.g., lipids, alcohol, etc.) may significantly modify the intrinsic membrane resistance to breakthrough, more so the higher the surfactant concentration. We conclude that the requirements of ECMO devices in terms of resistance to plasma breakthrough ought to account for all these factors and not rely only on membrane maximal pore size.
Artificial Organs, 2002
Coil-type silicone membrane oxygenators can only be used with roller blood pumps due to the resistance from the high blood flow. Therefore, during extracorporeal membrane oxygenation (ECMO) treatment, the combination of a roller pump and an oxygenator with a high blood flow resistance will induce severe hemolysis, which is a serious problem. A silicone rubber, hollow fiber membrane oxygenator that has a low blood flow resistance was developed and evaluated with centrifugal pumps. During in vitro tests, sufficient gas transfer was demonstrated with a blood flow less than 3 L/min. Blood flow resistance was 18 mm Hg at 1 L/min blood flow. This oxygenator module was combined with the Gyro C1E3 (Kyocera, Japan), and veno-arterial ECMO was established on a Dexter strain calf. An ex vivo experiment was performed for 3 days with stable gas performance and low blood flow resistance. The combination of this oxygenator and centrifugal pump may be advantageous to enhance biocompatibility and have less blood trauma characteristics.
Journal of cardiac critical care TSS, 2017
► extracorporeal membrane oxygenation ► artificial lung ► acute respiratory failure ► acute cardiac failure ► extracorporeal life support ► extracorporeal pulmonary resuscitation
Artificial Organs, 2001
It is the goal of this section to publish material that provides information regarding specific issues, aspects of artificial organ application, approach, philosophy, suggestions, and/or thoughts for the future.
Artificial Organs, 2003
Silicone rubber hollow fiber membrane produces an ideal gas exchange for long-term ECMO due to nonporous characteristics. The extracapillary type silicone rubber ECMO oxygenator having an ultrathin hollow fiber membrane was developed for pediatric application. The test modules were compared to conventional silicone coiltype ECMO modules. In vitro experiments demonstrated a higher O 2 and CO 2 transfer rate, lower blood flow resistance, and less hemolysis than the conventional silicone coil-type modules. This oxygenator was combined with the Gyro C1E3 centrifugal pump, and three ex vivo experiments were conducted to simulate pediatric V-A ECMO condition. Four day and 6 day experiments were conducted in cases 1 and 2, respectively. Case 3 was a long-term experiment up to 2 weeks. No plasma leakage and stable gas performances were achieved. The plasma free hemoglobin was maintained within a normal range. This compact pump-oxygenator system in conjunction with the Gyro C1E3 centrifugal pump has potential for a hybrid total ECMO system.
Journal of Applied Polymer Science, 2019
In this study, a commercial polyimide is examined in the capacity of membrane oxygenator. The effects of polymer concentration, cosolvent, and nonsolvent additives in dope solution on the performance and morphology of membranes are investigated. In order to improve the performance, surface modification is carried out by using plasma-enhanced chemical vapor deposition. The obtained results reveal that CO 2 permeance decreased from 495 to 78 GPU upon increasing Matrimid concentration at constant tetrahydrofuran (THF) and ethanol (EtOH) concentrations. It was also found that increasing nonsolvent concentration as well as decreasing cosolvent concentration in dope led to increase in membrane gas permeance. According to morphological characterizations, increase in polymer concentration resulted in transformation of membranes from porous into spongy like microstructure with formation of a denser skin layer. In addition, membrane porosity and mean pore size reduced by increasing THF and decreasing EtOH concentrations. On the other hand, plasma treatment successfully introduced fluorine groups onto the membrane surface which promoted biocompatibility of the membranes. Energy-dispersive X-ray spectroscopy results revealed that fluorination of membrane surface was attained up to 23% and contact angle of membrane enhanced up to 120. Membrane permeance was also increased slightly upon modification.
PubMed, 1993
With the trend in open heart surgery toward normothermic bypass and warm blood cardioplegia, greater demand is being placed on the perfusionist to select an oxygenator that will perform safely and efficiently under a variety of conditions. While manufacturers report performance parameters for their products, the data is often not comparable due to widely differing conditions. Recent in vitro evaluation techniques employed to characterize membrane oxygenators do not simulate the actual oxygenator conditions observed during cardiopulmonary bypass. Biocompatibility and drug delivery are reported but comparisons of different oxygenator performance parameters are not completely addressed. We have designed a test circuit and an evaluation protocol to simultaneously characterize the performance of multiple oxygenators under identical conditions. The test circuit is designed to simulate clinical conditions and to evaluate gas exchange, blood path pressures, gas path pressures, and hemolysis. Previously reported studies have relied on a comparison of a single membrane oxygenator and a single bubble oxygenator. Our protocol will compare multiple membrane oxygenators, in vitro, under similar clinically relevant conditions. Such testing would be done prior to animal or clinical trials. Furthermore in vitro tests should be more reproducible and more discriminating than are ex vivo tests.
2021 Design of Medical Devices Conference
Outcomes for cardiac arrest (CA) are currently poor, even when CA is experienced in hospital. While the gold standard for treatment is extracorporeal membrane oxygenation (ECMO), cardiopulmonary resuscitation (CPR) is most often used to treat cardiac arrest. We propose a fundamental change in ECMO technology to increase access by reducing the amount of highly trained personnel required to perform this treatment. Additionally, we propose a design in which ECMO functionality is combined with functionality of an intra-aortic balloon pump (IABP) in order to further reduce cardiac workload in cases of cardiac arrest and cardiogenic shock.
Advances in Extracorporeal Membrane Oxygenation - Volume 3, 2019
Lung transplantation has become an increasingly important modality for the treatment of severe lung disease. From its inception, the procedure has been refined so that it now represents the standard of care for end stage respiratory failure. The widespread adoption of this treatment option, however, has brought into sharp relief the current organ donor shortage. In tandem with the explosion in lung transplant procedures, a number of support modalities have seen an expanded role. Perhaps one of the most versatile tools in the armamentarium of the pulmonary transplant surgeon is extracorporeal membrane oxygenation (ECMO). This powerful tool is being increasingly implemented in all stages of lung transplantationfrom supporting the failing native organ as a bridging tool to transplantation, to stabilizing the patient intra-operatively during the transplant procedure, to rescuing the patient with severe primary graft dysfunction immediately post-transplant. A number of advanced techniques for the application of ECMO in order to optimize the pulmonary transplant procedure are gaining traction-and with ECMO's expanded role in lung transplantation, so also has come a new set of technical and ethical challenges that must also be overcome.
Frontiers in Medicine, 2021
Objective: To determine the research hotspots and trends in the field of extracorporeal membrane oxygenation (ECMO), and to provide a reference for further and wider research in the future.Methods: The literatures on ECMO from January 2011 to July 2021 in the Web of Science Core Collection (WOSCC) database were searched, and Citespace5.8.R1 software was used to conduct bibliographic and visual analysis on the literature by country, institution, author and keywords.Results: A total of 5,986 articles were enrolled. According to an observation, the number of articles published in the past decade has increased, especially from 2019 to 2020. The USA had the largest number of publications, while less ECMO related studies were conducted among non-developed countries. The University of Michigan (Univ Michigan) was the institution that had the largest number of publications and the highest centrality, and Daniel B was the author who had the largest number of publications. However, more inter...
The COVID-19 pandemic has highlighted resource constraints in respiratory support. The oxygen transfer characteristics of a hollow fiber membrane dialyser were investigated with a view to repurposing the device as a low-cost, readily available blood oxygenator. Oxygen transfer in a low-flux hollow fiber dialyser with a polysulfone membrane was studied by passing first water and then blood through the dialyser in counter-current to high-purity oxygen. Oxygen transfer rates of about 15% of the nominal 250 ml(STP)/min of a typical adult oxygen consumption rate were achieved for blood flow rates of 500ml/min. Using two such dialysis devices in parallel could provide up to 30% of the nominal oxygen consumption. Specific hollow fiber dialysis devices operating with suitable pumps in a veno-venous access configuration, could provide a cost-effective and readily available supplementation of respiratory support in the face of severe resource constraints.
Journal of Healthcare Engineering
The COVID-19 pandemic has highlighted resource constraints in respiratory support. The oxygen transfer characteristics of a specific hollow fiber membrane dialyser was investigated with a view to repurposing the device as a low-cost, readily available blood oxygenator. Oxygen transfer in a low-flux hollow fiber dialyser with a polysulfone membrane was studied by passing first water and then blood through the dialyser in countercurrent to high-purity oxygen. Oxygen transfer rates of about 15% of the nominal 250 ml (STP)/min of a typical adult oxygen consumption rate were achieved for blood flow rates of 500 ml/min. Using two such dialysis devices in parallel could provide up to 30% of the nominal oxygen consumption. Specific hollow fiber dialysis devices operating with suitable pumps in a veno-venous access configuration could provide a cost-effective and readily available supplementation of respiratory support in the face of severe resource constraints.
Membranes
Due to their high hemocompatibility and gas permeation capacity, bi-soft segment polyurethane/polycaprolactone (PU/PCL) polymers are promising materials for use in membrane blood oxygenators. In this work, both nonporous symmetric and integral asymmetric PU/PCL membranes were synthesized, and the permeation properties of the atmospheric gases N2, O2, and CO2 through these membranes were experimentally determined using a new custom-built gas permeation apparatus. Permeate pressure vs. time curves were obtained at 37.0 °C and gas feed pressures up to 5 bar. Fluxes, permeances, and permeability coefficients were determined from the steady-state part of the curves, and the diffusion and sorption coefficients were estimated from the analysis of the transient state using the time-lag method. Independent measurements of the sorption coefficients of the three gases were performed, under equilibrium conditions, in order to validate the new setup and procedure. This work shows that the gas so...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.