Academia.eduAcademia.edu

Dissipative dynamics of highly anisotropic systems

2010, Nuclear Physics A

Abstract

In this paper we present a method to improve the description of 0+1 dimensional boost invariant dissipative dynamics in the presence of large momentum-space anisotropies. We do this by reorganizing the canonical hydrodynamic expansion of the distribution function around a momentum-space anisotropic ansatz rather than an isotropic equilibrium one. At leading order the result obtained is two coupled ordinary differential equations for the momentum-space anisotropy and typical momentum of the degrees of freedom. We show that this framework can reproduce both the ideal hydrodynamic and free streaming limits. Additionally, we demonstrate that when linearized the differential equations reduce to 2nd order Israel-Stewart viscous hydrodynamics. Finally, we make quantitative comparisons of the evolution of the pressure anisotropy within our approach and 2nd order viscous hydrodynamics in both the strong and weak coupling limits.