Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005
…
2 pages
1 file
1997
We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In four-wave mixing, the biexciton photon echo decays fast and nonexponentially. This behavior results from the inhomogeneous broadening of the biexciton binding energy, as we show by a comparison with an analytical model calculation. The fast decay is thus not related to a fast microscopic biexciton dephasing.
Physical Review B, 1999
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pure and Applied Chemistry, 2000
The dynamics of excitonic transitions in semiconductors have been investigated by degenerate four-wave mixing experiments. We have studied the coherence, interference and dephasing of free, bound and localized excitons in bulk semiconductors and of quasi-two-dimensional excitons in quantum well structures. The influence of inhomogeneous broadening is investigated and compared with quantum interference in a continuum of states. The nature of four-wave mixing beats in a system of bound excitons and biexcitons is discussed.
Physical Review B, 2013
The emission energy dependence of the biexciton binding energy is investigated in three semiconductor quantum dot (QD) systems that exhibit different quantum well → QD confinement. Using two-dimensional Fourier-transform spectroscopy, we demonstrate that in strongly confining InAs QDs, the binding energy is independent of exciton emission energy and fluctuations in the ground state → exciton transition energy are strongly correlated with those of the exciton → biexciton. In contrast, the biexciton binding energy increases with emission energy in weakly confining interfacial GaAs QDs, and the level of correlation of exciton-biexciton broadening is reduced. A comparison with simulations reveals the significance of the strength and nature of confinement on Coulomb interactions responsible for biexciton renormalization.
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Physical review. B, Condensed matter, 1994
Chemical Physics Letters, 1994
We demonstrate a novel approach to probing the magnitude and degree of spatial correlation of local (molecular or atomic) energetic disorder in delocalized exciton systems. The approach is based on measuring the correlation between the ground state to one-exciton and the one-exciton to two-exciton transition frequencies using two-color pump-probe experiments. We apply this technique to aggregates of pseudo-isocyanine and tind surprisingly strong intermolecular correlations in the disorder. 0009-2614/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved SSDIOOO9-2614(94)00379-5
Physical Review Letters, 2002
We measure the dephasing time of ground-state excitonic transitions in InGaAs quantum dots under electrical injection in the temperature range from 10 to 70 K. Electrical injection into the barrier region results in a pure dephasing of the excitonic transitions. Once the injected carriers fill the electronic ground state, the biexciton to exciton transition is probed and a correlation of the exciton and biexciton phonon scattering mechanisms is found. Additional filling of the excited states creates multiexcitons that show a fast dephasing due to population relaxation.
International Journal of Modern Physics B, 1995
The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton–exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
physica status solidi (b), 2013
Solid State Communications, 1994
Physical Review B, 2014
The Journal of Physical Chemistry, 1984
Physical Review Letters, 2003
Physical Review B
The Journal of Chemical Physics, 1977
Scientific Reports, 2013
Physical Review B, 1996
Physical Review B, 2011
Chemical Physics, 2008
Chemical Physics, 1983
Journal of Physics: Condensed Matter, 1991