Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2016, Physica A: Statistical Mechanics and its Applications
…
1 file
Evaluation of link prediction methods is a hard task in very large complex networks because of the inhibitive computational cost. By setting a lower bound of the number of common neighbors (CN), we propose a new framework to efficiently and precisely evaluate the performances of CN-based similarity indices in link prediction for very large heterogeneous networks. Specifically, we propose a fast algorithm based on the parallel computing scheme to obtain all the node pairs with CN values larger than the lower bound. Furthermore, we propose a new measurement, called selfpredictability, to quantify the performance of the CN-based similarity indices in link prediction, which on the other side can indicate the link predictability of a network.
Journal of Parallel and Distributed Computing, 2017
Link prediction has become an important task, especially with the rise of large-scale, complex and dynamic networks. The emerging research area of network dynamics and evolution is directly related to predicting new interactions between objects, a possibility in the near future. Recent studies show that the precision of link prediction can be improved to a great extent by including community information in the prediction methods. As traditional community-based link prediction algorithms can run only on stand-alone computers, they are not well suited for most of the large networks. Graph parallelization can be one solution to such problems. Bulk Synchronous Parallel (BSP) programming model is a recently emerged framework for parallelizing graph algorithms. In this paper, we propose a hybrid similarity measure for link prediction in real world networks. We also propose a scalable method for community structure-based link prediction on large networks. This method uses a parallel label propagation algorithm for community detection and a parallel community information-based Adamic-Adar measure for link prediction. We have developed these algorithms using Bulk Synchronous Parallel programming model and tested them with large networks of various domains.
PeerJ Computer Science, 2021
The problem of determining the likelihood of the existence of a link between two nodes in a network is called link prediction. This is made possible thanks to the existence of a topological structure in most real-life networks. In other words, the topologies of networked systems such as the World Wide Web, the Internet, metabolic networks, and human society are far from random, which implies that partial observations of these networks can be used to infer information about undiscovered interactions. Significant research efforts have been invested into the development of link prediction algorithms, and some researchers have made the implementation of their methods available to the research community. These implementations, however, are often written in different languages and use different modalities of interaction with the user, which hinders their effective use. This paper introduces LinkPred, a high-performance parallel and distributed link prediction library that includes the imp...
Link prediction is a link mining task that tries to find new edges within a given graph. Among the targets of link prediction there is large directed graphs, which are frequent structures nowadays. The typical sparsity of large graphs demands of high precision predictions in order to obtain usable results. However, the size of those graphs only permits the execution of scalable algorithms. As a trade-off between those two problems we recently proposed a link prediction algorithm for directed graphs that exploits hierarchical properties. The algorithm can be classified as a local score, which entails scalability. Unlike the rest of local scores, our proposal assumes the existence of an underlying model for the data which allows it to produce predictions with a higher precision. We test the validity of its hierarchical assumptions on two clearly hierarchical data sets, one of them based on RDF. Then we test it on a non-hierarchical data set based on Wikipedia to demonstrate its broad applicability. Given the computational complexity of link prediction in very large graphs we also introduce some general recommendations useful to make of link prediction an efficiently parallelized problem.
IEEE Access, 2021
Link mining is an important task in the field of data mining and has numerous applications in informal community. Suppose a real-world complex network, the responsibility of this function is to anticipate those links which are not occurred yet in the given real-world network. Holding the significance of LP, the link mining or expectation job has gotten generous consideration from scientists in differing exercise. In this manner, countless strategies for taking care of this issue have been proposed in the late decades. Various articles of link prediction are accessible, however, these are antiquated as multiples new methodologies introduced. In this paper, give a precise assessment of prevail link mining approaches. The investigation is through, it consists the soonest scoring-based approaches and reaches out to the latest strategies which confide on different link prediction strategies. We additionally order link prediction strategies because of their specialized methodology and dis...
Scientific Reports
Link prediction in a complex network is a problem of fundamental interest in network science and has attracted increasing attention in recent years. It aims to predict missing (or future) links between two entities in a complex system that are not already connected. Among existing methods, local similarity indices are most popular that take into account the information of common neighbours to estimate the likelihood of existence of a connection between two nodes. In this paper, we propose global and quasi-local extensions of some commonly used local similarity indices. We have performed extensive numerical simulations on publicly available datasets from diverse domains demonstrating that the proposed extensions not only give superior performance, when compared to their respective local indices, but also outperform some of the current, state-of-the-art, local and global link-prediction methods.
arXiv (Cornell University), 2022
Complex networks are graphs representing real-life systems that exhibit unique characteristics not found in purely regular or completely random graphs. The study of such systems is vital but challenging due to the complexity of the underlying processes. This task has nevertheless been made easier in recent decades thanks to the availability of large amounts of networked data. Link prediction in complex networks aims to estimate the likelihood that a link between two nodes is missing from the network. Links can be missing due to imperfections in data collection or simply because they are yet to appear. Discovering new relationships between entities in networked data has attracted researchers' attention in various domains such as sociology, computer science, physics, and biology. Most existing research focuses on link prediction in undirected complex networks. However, not all real-life systems can be faithfully represented as undirected networks. This simplifying assumption is often made when using link prediction algorithms but inevitably leads to loss of information about relations among nodes and degradation in prediction performance. This paper introduces a link prediction method designed explicitly for directed networks. It is based on the similarity-popularity paradigm, which has recently proven successful in undirected networks. The presented algorithms handle the asymmetry in node relationships by modeling it as asymmetry in similarity and popularity. Given the observed network topology, the algorithms approximate the hidden similarities as shortest path distances using edge weights that capture and factor out the links' asymmetry and nodes' popularity. The proposed approach is evaluated on real-life networks, and the experimental results demonstrate its effectiveness in predicting missing links across a broad spectrum of networked data types and sizes.
Scientific Reports, 2020
Link prediction is the task of computing the likelihood that a link exists between two given nodes in a network. With countless applications in different areas of science and engineering, link prediction has received the attention of many researchers working in various disciplines. Considerable research efforts have been invested into the development of increasingly accurate prediction methods. Most of the proposed algorithms, however, have limited use in practice because of their high computational requirements. The aim of this work is to develop a scalable link prediction algorithm that offers a higher overall predictive power than existing methods. The proposed solution falls into the class of global, parameter-free similarity-popularity-based methods, and in it, we assume that network topology is governed by three factors: popularity of the nodes, their similarity and the attraction induced by local neighbourhood. In our approach, popularity and neighbourhood-caused attraction a...
2011 IEEE 11th International Conference on Data Mining Workshops, 2011
Complex networks have been receiving increasing attention by the scientific community, also due to the availability of massive network data from diverse domains. One problem largely studied so far is Link Prediction, i.e. the problem of predicting new upcoming connections in the network. However, one aspect of complex networks has been disregarded so far: real networks are often multidimensional, i.e. multiple connections may reside between any two nodes. In this context, we define the problem of Multidimensional Link Prediction, and we introduce several predictors based on structural analysis of the networks. We present the results obtained on real networks, showing the performances of both the introduced multidimensional versions of the Common Neighbors and Adamic-Adar, and the derived predictors aimed at capturing the multidimensional and temporal information extracted from the data. Our findings show that the evolution of multidimensional networks can be predicted, and that supervised models may improve the accuracy of underlying unsupervised predictors, if used in conjunction with them.
Cluster in graphs is densely connected group of vertices sparsely connected to other groups. Hence, for prediction of a future link between a pair of vertices, these vertices common neighbors may play dif- ferent roles depending on if they belong or not to the same cluster. Based on that, we propose a new measure (WIC) for link prediction between a pair of vertices considering the sets of their intra-cluster or within-cluster (W) and between-cluster or inter-cluster (IC) common neighbors. Also, we propose a set of measures, referred to as W forms, using only the set given by the within-cluster common neighbors instead of using the set of all common neighbors as usually considered in the basic local similarity measures. Consequently, a previous clustering scheme must be applied on the graph. Using three different clustering algorithms, we compared WIC measure with ten basic local similarity measures and their counter- part W forms on ten real networks. Our analyses suggest that clustering information, no matter the clustering algorithm used, improves link pre- diction accuracy.
International Conferences on Software Engineering and Knowledge Engineering, 2017
Link prediction is an important research direction in the field of Social Network Analysis. The significance of this research area is crucial especially in the fields of network evolution analysis and recommender system in online social networks as well as e-commerce sites. This paper aims at predicting the hidden links that are likely to occur in near future. The possibility of formation of links is based on the similarity score between pair of nodes that are not yet connected in the social network. The similarity score, which we call link prediction score has been evaluated in Map-Reduce programming model. The proposed similarity score is based on both the structural information around the nodes and the degree of influence for neighboring nodes. The proposed algorithm is scalable in nature and performs quite well for large scale complex networks having good number of nodes and edges based on large pool of data or often termed as big-data. The efficiency and effectiveness of the algorithms are extensively tested and compared against traditional link prediction algorithms using three real world social network datasets.
Journal of Complex Networks, 2017
International Journal of Electrical and Computer Engineering (IJECE), 2022
International Journal of Modeling and Optimization, 2014
Physica A: Statistical Mechanics and its Applications, 2019
International Journal of Grid and Distributed Computing, 2016
Scientific Reports, 2021
Proceedings of the 23rd International Conference on World Wide Web, 2014
International Journal of Computer Applications, 2015
International Journal of Advanced Computer Science and Applications, 2018
Proceedings of the 2014 CoNEXT on Student Workshop, 2014
Advances in Intelligent Systems and Computing, 2019
Journal of Systems and Software, 2012
International Journal of Information Technology and Web Engineering, 2020
2012 Ninth International Conference on Information Technology - New Generations, 2012